Moving some code from Python to C++.
BASEPAIRS = { \"T\": \"A\", \"A\": \"T\", \"G\": \"C\", \"C\": \"G\" }
Thinking maps might be overkill? W
While using a std::map
is fine or using a 256-sized char table would be fine, you could save yourself an enormous amount of space agony by simply using an enum
. If you have C++11 features, you can use enum class
for strong-typing:
// First, we define base-pairs. Because regular enums
// Pollute the global namespace, I'm using "enum class".
enum class BasePair {
A,
T,
C,
G
};
// Let's cut out the nonsense and make this easy:
// A is 0, T is 1, C is 2, G is 3.
// These are indices into our table
// Now, everything can be so much easier
BasePair Complimentary[4] = {
T, // Compliment of A
A, // Compliment of T
G, // Compliment of C
C, // Compliment of G
};
Usage becomes simple:
int main (int argc, char* argv[] ) {
BasePair bp = BasePair::A;
BasePair complimentbp = Complimentary[(int)bp];
}
If this is too much for you, you can define some helpers to get human-readable ASCII characters and also to get the base pair compliment so you're not doing (int)
casts all the time:
BasePair Compliment ( BasePair bp ) {
return Complimentary[(int)bp]; // Move the pain here
}
// Define a conversion table somewhere in your program
char BasePairToChar[4] = { 'A', 'T', 'C', 'G' };
char ToCharacter ( BasePair bp ) {
return BasePairToChar[ (int)bp ];
}
It's clean, it's simple, and its efficient.
Now, suddenly, you don't have a 256 byte table. You're also not storing characters (1 byte each), and thus if you're writing this to a file, you can write 2 bits per Base pair instead of 1 byte (8 bits) per base pair. I had to work with Bioinformatics Files that stored data as 1 character each. The benefit is it was human-readable. The con is that what should have been a 250 MB file ended up taking 1 GB of space. Movement and storage and usage was a nightmare. Of coursse, 250 MB is being generous when accounting for even Worm DNA. No human is going to read through 1 GB worth of base pairs anyhow.
If you are into optimization, and assuming the input is always one of the four characters, the function below might be worth a try as a replacement for the map:
char map(const char in)
{ return ((in & 2) ? '\x8a' - in : '\x95' - in); }
It works based on the fact that you are dealing with two symmetric pairs. The conditional works to tell apart the A/T pair from the G/C one ('G' and 'C' happen to have the second-least-significant bit in common). The remaining arithmetics performs the symmetric mapping. It's based on the fact that a = (a + b) - b is true for any a,b.
This is the fastest, simplest, smallest space solution I can think of. A good optimizing compiler will even remove the cost of accessing the pair and name arrays. This solution works equally well in C.
#include <iostream>
enum Base_enum { A, C, T, G };
typedef enum Base_enum Base;
static const Base pair[4] = { T, G, A, C };
static const char name[4] = { 'A', 'C', 'T', 'G' };
static const Base base[85] =
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, A, -1, C, -1, -1,
-1, G, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, T };
const Base
base2 (const char b)
{
switch (b)
{
case 'A': return A;
case 'C': return C;
case 'T': return T;
case 'G': return G;
default: abort ();
}
}
int
main (int argc, char *args)
{
for (Base b = A; b <= G; b++)
{
std::cout << name[b] << ":"
<< name[pair[b]] << std::endl;
}
for (Base b = A; b <= G; b++)
{
std::cout << name[base[name[b]]] << ":"
<< name[pair[base[name[b]]]] << std::endl;
}
for (Base b = A; b <= G; b++)
{
std::cout << name[base2(name[b])] << ":"
<< name[pair[base2(name[b])]] << std::endl;
}
};
base[] is a fast ascii char to Base (i.e. int between 0 and 3 inclusive) lookup that is a bit ugly. A good optimizing compiler should be able to handle base2() but I'm not sure if any do.
BASEPAIRS = { "T": "A", "A": "T", "G": "C", "C": "G" } What would you use?
Maybe:
static const char basepairs[] = "ATAGCG";
// lookup:
if (const char* p = strchr(basepairs, c))
// use p[1]
;-)
You can use the following syntax:
#include <map>
std::map<char, char> my_map = {
{ 'A', '1' },
{ 'B', '2' },
{ 'C', '3' }
};
A table out of char array:
char map[256] = { 0 };
map['T'] = 'A';
map['A'] = 'T';
map['C'] = 'G';
map['G'] = 'C';
/* .... */