I think this can be a stupid question but after read a lot and search a lot about image processing every example I see about image processing uses gray scale to work
I u
As explained by John Zhang:
luminance is by far more important in distinguishing visual features
John also gives an excellent suggestion to illustrate this property: take a given image and separate the luminance plane from the chrominance planes.
To do so you can use ImageMagick separate operator that extracts the current contents of each channel as a gray-scale image:
convert myimage.gif -colorspace YCbCr -separate sep_YCbCr_%d.gif
Here's what it gives on a sample image (top-left: original color image, top-right: luminance plane, bottom row: chrominance planes):
First of starting image processing whether on gray scale or color images, it is better to focus on the applications which we are applying. Unless and otherwise, if we choose one of them randomly, it will create accuracy problem in our result. For example, if I want to process image of waste bin, I prefer to choose gray scale rather than color. Because in the bin image I want only to detect the shape of bin image using optimized edge detection. I could not bother about the color of image but I want to see rectangular shape of the bin image correctly.
I disagree with the implication that gray scale images are always better than color images; it depends on the technique and the overall goal of the processing. For example, if you wanted to count the bananas in an image of a fruit bowl image, then it's much easier to segment when you have a colored image!
Many images have to be in grayscale because of the measuring device used to obtain them. Think of an electron microscope. It's measuring the strength of an electron beam at various space points. An AFM is measuring the amount of resonance vibrations at various points topologically on a sample. In both cases, these tools are returning a singular value- an intensity, so they implicitly are creating a gray-scale image.
For image processing techniques based on brightness, they often can be applied sufficiently to the overall brightness (grayscale); however, there are many many instances where having a colored image is an advantage.
To elaborate a bit on deltheil's answer:
Of all these, I'll emphasize the first two: make the image simpler, and reduce the amount of code you have to write.
Binary might be too simple and it could not represent the picture character. Color might be too much and affect the processing speed.
Thus, grayscale is chosen, which is in the mid of the two ends.