I cannot successfully run the optimize_for_inference
module on a simple, saved TensorFlow graph (Python 2.7; package installed by pip install tensorflow-gpu==
input
is a graphdef file for the script not the data part of the checkpoint. You need to freeze the model to a .pb
file/ or get the prototxt for graph and use the optimize for inference script. This script takes either a frozen binary GraphDef file (where the weight
variables have been converted into constants by the freeze_graph script), or a
text GraphDef proto file (the weight variables are stored in a separate
checkpoint file), and outputs a new GraphDef with the optimizations applied.
Here is the detailed guide on how to optimize for inference:
The optimize_for_inference
module takes a frozen binary GraphDef
file as input and outputs the optimized Graph Def
file which you can use for inference. And to get the frozen binary GraphDef file
you need to use the module freeze_graph
which takes a GraphDef proto
, a SaverDef proto
and a set of variables stored in a checkpoint file. The steps to achieve that is given below:
# make and save a simple graph
G = tf.Graph()
with G.as_default():
x = tf.placeholder(dtype=tf.float32, shape=(), name="x")
a = tf.Variable(5.0, name="a")
y = tf.add(a, x, name="y")
saver = tf.train.Saver()
with tf.Session(graph=G) as sess:
sess.run(tf.global_variables_initializer())
out = sess.run(fetches=[y], feed_dict={x: 1.0})
# Save GraphDef
tf.train.write_graph(sess.graph_def,'.','graph.pb')
# Save checkpoint
saver.save(sess=sess, save_path="test_model")
python -m tensorflow.python.tools.freeze_graph --input_graph graph.pb --input_checkpoint test_model --output_graph graph_frozen.pb --output_node_names=y
python -m tensorflow.python.tools.optimize_for_inference --input graph_frozen.pb --output graph_optimized.pb --input_names=x --output_names=y
with tf.gfile.GFile('graph_optimized.pb', 'rb') as f:
graph_def_optimized = tf.GraphDef()
graph_def_optimized.ParseFromString(f.read())
G = tf.Graph()
with tf.Session(graph=G) as sess:
y, = tf.import_graph_def(graph_def_optimized, return_elements=['y:0'])
print('Operations in Optimized Graph:')
print([op.name for op in G.get_operations()])
x = G.get_tensor_by_name('import/x:0')
out = sess.run(y, feed_dict={x: 1.0})
print(out)
#Output
#Operations in Optimized Graph:
#['import/x', 'import/a', 'import/y']
#6.0
If there are multiple output nodes, then specify : output_node_names = 'boxes, scores, classes'
and import graph by,
boxes,scores,classes, = tf.import_graph_def(graph_def_optimized, return_elements=['boxes:0', 'scores:0', 'classes:0'])