Some of this is gaming folklore, and maybe mantras passed down from game developers who were targeting very limited devices (mobile, e.g.) to gamedevs who weren't.
However, a thing to keep in mind about games is that their performance characteristics are dominated by smooth and predictable frame rates. They're not mission-critical software, but they are "FPS-critical" software. A hiccup in frame rates could cause the player to game over in an action game, e.g. As a result, as much as you might find some healthy level of paranoia in mission-critical software about not failing, you can likewise find something similar in gaming about not stuttering and lagging.
A lot of gamedevs I've talked to also don't even like virtual memory and I've seen them try to apply ways to minimize the probability that a page fault could occur at an inconvenient time. In other fields, people might love virtual memory, but games are "FPS-critical". They don't want any kind of weird hiccup or stutter to occur somewhere during gameplay.
So if we start with exceptions, modern implementations of zero-cost EH allow normal execution paths to execute faster than if they were to perform manual branching on error conditions. But they come at the cost that throwing an exception suddenly becomes a much more expensive, "stop the world" kind of event. That kind of "stop the world" thing can be disastrous to a software seeking the most predictable and smooth frame rates. Of course that's only supposed to be reserved for truly exceptional paths, but a game might prefer to just find reasons not to face exceptional paths since the cost of throwing would be too great in the middle of a game. Graceful recovery is kind of a moot concept if the game has a strong desire to be avoiding facing exceptional paths in the first place.
Games often have this kind of "startup and go" characteristic, where they can potentially do all their file loading and memory allocation and things like that which could fail in advance on loading up the level or starting the game instead of doing things that could fail in the middle of the game. As a result they don't necessarily have that many decentralized code paths that could or should encounter an exception and that also diminishes the benefits of EH since it doesn't become so convenient if there are only a select few areas maximum that might benefit from it.
For similar reasons to EH, gamedevs often dislike garbage collection since it can also have that kind of "stop the world" event which can lead to unpredictable stutters -- the briefest of stutters that might be easy to dismiss in many domains as harmless, but not to gamedevs. As a result they might avoid it outright or seek object pooling just to prevent GC collections from occurring at inopportune times.
Avoiding smart pointers outright seems a bit more extreme to me, but a lot of games can preallocate their memory in advance or they might use an entity-component system where every component type is stored in a random-access sequence which allows them to be indexed. Smart pointers imply heap allocations and things that own memory at the granular level of a single object (at least unless you use a custom allocator and custom delete function object), and most games might find it in their best interest to avoid such granular heap allocations and instead allocate many things at once in a large container or through a memory pool.
There might be a bit of superstition here but I think some of it is at least justifiable.