I\'m using pyspark(Python 2.7.9/Spark 1.3.1) and have a dataframe GroupObject which I need to filter & sort in the descending order. Trying to achieve it via this piece of c
In pyspark 2.4.4
1) group_by_dataframe.count().filter("`count` >= 10").orderBy('count', ascending=False)
2) from pyspark.sql.functions import desc
group_by_dataframe.count().filter("`count` >= 10").orderBy('count').sort(desc('count'))
No need to import in 1) and 1) is short & easy to read,
So I prefer 1) over 2)
By far the most convenient way is using this:
df.orderBy(df.column_name.desc())
Doesn't require special imports.
In PySpark 1.3 sort
method doesn't take ascending parameter. You can use desc
method instead:
from pyspark.sql.functions import col
(group_by_dataframe
.count()
.filter("`count` >= 10")
.sort(col("count").desc()))
or desc
function:
from pyspark.sql.functions import desc
(group_by_dataframe
.count()
.filter("`count` >= 10")
.sort(desc("count"))
Both methods can be used with with Spark >= 1.3 (including Spark 2.x).
you can use groupBy and orderBy as follows also
dataFrameWay = df.groupBy("firstName").count().withColumnRenamed("count","distinct_name").sort(desc("count"))
Use orderBy:
df.orderBy('column_name', ascending=False)
Complete answer:
group_by_dataframe.count().filter("`count` >= 10").orderBy('count', ascending=False)
http://spark.apache.org/docs/2.0.0/api/python/pyspark.sql.html