I need to write a function which will detect if the input contains at least one value which is non-numeric. If a non-numeric value is found I will raise an error (because the ca
(np.where(np.isnan(A)))[0].shape[0]
will be greater than 0
if A
contains at least one element of nan
, A
could be an n x m
matrix.
Example:
import numpy as np
A = np.array([1,2,4,np.nan])
if (np.where(np.isnan(A)))[0].shape[0]:
print "A contains nan"
else:
print "A does not contain nan"
With numpy 1.3 or svn you can do this
In [1]: a = arange(10000.).reshape(100,100)
In [3]: isnan(a.max())
Out[3]: False
In [4]: a[50,50] = nan
In [5]: isnan(a.max())
Out[5]: True
In [6]: timeit isnan(a.max())
10000 loops, best of 3: 66.3 µs per loop
The treatment of nans in comparisons was not consistent in earlier versions.
This should be faster than iterating and will work regardless of shape.
numpy.isnan(myarray).any()
Edit: 30x faster:
import timeit
s = 'import numpy;a = numpy.arange(10000.).reshape((100,100));a[10,10]=numpy.nan'
ms = [
'numpy.isnan(a).any()',
'any(numpy.isnan(x) for x in a.flatten())']
for m in ms:
print " %.2f s" % timeit.Timer(m, s).timeit(1000), m
Results:
0.11 s numpy.isnan(a).any()
3.75 s any(numpy.isnan(x) for x in a.flatten())
Bonus: it works fine for non-array NumPy types:
>>> a = numpy.float64(42.)
>>> numpy.isnan(a).any()
False
>>> a = numpy.float64(numpy.nan)
>>> numpy.isnan(a).any()
True
Pfft! Microseconds! Never solve a problem in microseconds that can be solved in nanoseconds.
Note that the accepted answer:
A better solution is to return True immediately when NAN is found:
import numba
import numpy as np
NAN = float("nan")
@numba.njit(nogil=True)
def _any_nans(a):
for x in a:
if np.isnan(x): return True
return False
@numba.jit
def any_nans(a):
if not a.dtype.kind=='f': return False
return _any_nans(a.flat)
array1M = np.random.rand(1000000)
assert any_nans(array1M)==False
%timeit any_nans(array1M) # 573us
array1M[0] = NAN
assert any_nans(array1M)==True
%timeit any_nans(array1M) # 774ns (!nanoseconds)
and works for n-dimensions:
array1M_nd = array1M.reshape((len(array1M)/2, 2))
assert any_nans(array1M_nd)==True
%timeit any_nans(array1M_nd) # 774ns
Compare this to the numpy native solution:
def any_nans(a):
if not a.dtype.kind=='f': return False
return np.isnan(a).any()
array1M = np.random.rand(1000000)
assert any_nans(array1M)==False
%timeit any_nans(array1M) # 456us
array1M[0] = NAN
assert any_nans(array1M)==True
%timeit any_nans(array1M) # 470us
%timeit np.isnan(array1M).any() # 532us
The early-exit method is 3 orders or magnitude speedup (in some cases). Not too shabby for a simple annotation.
If infinity is a possible value, I would use numpy.isfinite
numpy.isfinite(myarray).all()
If the above evaluates to True
, then myarray
contains no, numpy.nan
, numpy.inf
or -numpy.inf
values.
numpy.nan
will be OK with numpy.inf
values, for example:
In [11]: import numpy as np
In [12]: b = np.array([[4, np.inf],[np.nan, -np.inf]])
In [13]: np.isnan(b)
Out[13]:
array([[False, False],
[ True, False]], dtype=bool)
In [14]: np.isfinite(b)
Out[14]:
array([[ True, False],
[False, False]], dtype=bool)