PCA projection and reconstruction in scikit-learn

前端 未结 2 2019
予麋鹿
予麋鹿 2021-01-30 05:43

I can perform PCA in scikit by code below: X_train has 279180 rows and 104 columns.

from sklearn.decomposition import PCA
pca = PCA(n_components=30)
X_train_pca          


        
相关标签:
2条回答
  • 2021-01-30 06:20

    Adding on @eickenberg's post, here is how to do the pca reconstruction of digits' images:

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_digits
    from sklearn import decomposition
    
    n_components = 10
    image_shape = (8, 8)
    
    digits = load_digits()
    digits = digits.data
    
    n_samples, n_features = digits.shape
    estimator = decomposition.PCA(n_components=n_components, svd_solver='randomized', whiten=True)
    digits_recons = estimator.inverse_transform(estimator.fit_transform(digits))
    
    # show 5 randomly chosen digits and their PCA reconstructions with 10 dominant eigenvectors
    indices = np.random.choice(n_samples, 5, replace=False)
    plt.figure(figsize=(5,2))
    for i in range(len(indices)):
        plt.subplot(1,5,i+1), plt.imshow(np.reshape(digits[indices[i],:], image_shape)), plt.axis('off')
    plt.suptitle('Original', size=25)
    plt.show()
    plt.figure(figsize=(5,2))
    for i in range(len(indices)):
        plt.subplot(1,5,i+1), plt.imshow(np.reshape(digits_recons[indices[i],:], image_shape)), plt.axis('off')
    plt.suptitle('PCA reconstructed'.format(n_components), size=25)
    plt.show()
    

    0 讨论(0)
  • 2021-01-30 06:24

    You can do

    proj = pca.inverse_transform(X_train_pca)
    

    That way you do not have to worry about how to do the multiplications.

    What you obtain after pca.fit_transform or pca.transform are what is usually called the "loadings" for each sample, meaning how much of each component you need to describe it best using a linear combination of the components_ (the principal axes in feature space).

    The projection you are aiming at is back in the original signal space. This means that you need to go back into signal space using the components and the loadings.

    So there are three steps to disambiguate here. Here you have, step by step, what you can do using the PCA object and how it is actually calculated:

    1. pca.fit estimates the components (using an SVD on the centered Xtrain):

      from sklearn.decomposition import PCA
      import numpy as np
      from numpy.testing import assert_array_almost_equal
      
      #Should this variable be X_train instead of Xtrain?
      X_train = np.random.randn(100, 50)
      
      pca = PCA(n_components=30)
      pca.fit(X_train)
      
      U, S, VT = np.linalg.svd(X_train - X_train.mean(0))
      
      assert_array_almost_equal(VT[:30], pca.components_)
      
    2. pca.transform calculates the loadings as you describe

      X_train_pca = pca.transform(X_train)
      
      X_train_pca2 = (X_train - pca.mean_).dot(pca.components_.T)
      
      assert_array_almost_equal(X_train_pca, X_train_pca2)
      
    3. pca.inverse_transform obtains the projection onto components in signal space you are interested in

      X_projected = pca.inverse_transform(X_train_pca)
      X_projected2 = X_train_pca.dot(pca.components_) + pca.mean_
      
      assert_array_almost_equal(X_projected, X_projected2)
      

    You can now evaluate the projection loss

    loss = ((X_train - X_projected) ** 2).mean()
    
    0 讨论(0)
提交回复
热议问题