Python implementation of the Wilson Score Interval?

前端 未结 5 577
-上瘾入骨i
-上瘾入骨i 2021-01-30 04:18

After reading How Not to Sort by Average Rating, I was curious if anyone has a Python implementation of a Lower bound of Wilson score confidence interval for a Bernoulli paramet

相关标签:
5条回答
  • 2021-01-30 04:55

    Reddit uses the Wilson score interval for comment ranking, an explanation and python implementation can be found here

    #Rewritten code from /r2/r2/lib/db/_sorts.pyx
    
    from math import sqrt
    
    def confidence(ups, downs):
        n = ups + downs
    
        if n == 0:
            return 0
    
        z = 1.0 #1.44 = 85%, 1.96 = 95%
        phat = float(ups) / n
        return ((phat + z*z/(2*n) - z * sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n))
    
    0 讨论(0)
  • 2021-01-30 04:59

    To get the Wilson CI without continuity correction, you can use proportion_confint in statsmodels.stats.proportion. To get the Wilson CI with continuity correction, you can use the code below.

    # cf. 
    # [1] R. G. Newcombe. Two-sided confidence intervals for the single proportion, 1998
    # [2] R. G. Newcombe. Interval Estimation for the difference between independent proportions:        comparison of eleven methods, 1998
    
    import numpy as np
    from statsmodels.stats.proportion import proportion_confint
    
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
    def propci_wilson_cc(count, nobs, alpha=0.05):
        # get confidence limits for proportion
        # using wilson score method w/ cont correction
        # i.e. Method 4 in Newcombe [1]; 
        # verified via Table 1
        from scipy import stats
        n = nobs
        p = count/n
        q = 1.-p
        z = stats.norm.isf(alpha / 2.)
        z2 = z**2   
        denom = 2*(n+z2)
        num = 2.*n*p+z2-1.-z*np.sqrt(z2-2-1./n+4*p*(n*q+1))    
        ci_l = num/denom
        num = 2.*n*p+z2+1.+z*np.sqrt(z2+2-1./n+4*p*(n*q-1))
        ci_u = num/denom
        if p == 0:
            ci_l = 0.
        elif p == 1:
            ci_u = 1.
        return ci_l, ci_u
    
    
    def dpropci_wilson_nocc(a,m,b,n,alpha=0.05):
        # get confidence limits for difference in proportions
        #   a/m - b/n
        # using wilson score method WITHOUT cont correction
        # i.e. Method 10 in Newcombe [2]
        # verified via Table II    
        theta = a/m - b/n        
        l1, u1 = proportion_confint(count=a, nobs=m, alpha=0.05, method='wilson')
        l2, u2 = proportion_confint(count=b, nobs=n, alpha=0.05, method='wilson')
        ci_u = theta + np.sqrt((a/m-u1)**2+(b/n-l2)**2)
        ci_l = theta - np.sqrt((a/m-l1)**2+(b/n-u2)**2)     
        return ci_l, ci_u
    
    
    def dpropci_wilson_cc(a,m,b,n,alpha=0.05):
        # get confidence limits for difference in proportions
        #   a/m - b/n
        # using wilson score method w/ cont correction
        # i.e. Method 11 in Newcombe [2]    
        # verified via Table II  
        theta = a/m - b/n    
        l1, u1 = propci_wilson_cc(count=a, nobs=m, alpha=alpha)
        l2, u2 = propci_wilson_cc(count=b, nobs=n, alpha=alpha)    
        ci_u = theta + np.sqrt((a/m-u1)**2+(b/n-l2)**2)
        ci_l = theta - np.sqrt((a/m-l1)**2+(b/n-u2)**2)     
        return ci_l, ci_u
    
    
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
    # single proportion testing 
    # these come from Newcombe [1] (Table 1)
    a_vec = np.array([81, 15, 0, 1])
    m_vec = np.array([263, 148, 20, 29])
    for (a,m) in zip(a_vec,m_vec):
        l1, u1 = proportion_confint(count=a, nobs=m, alpha=0.05, method='wilson')
        l2, u2 = propci_wilson_cc(count=a, nobs=m, alpha=0.05)
        print(a,m,l1,u1,'   ',l2,u2)
    
    # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
    # difference in proportions testing 
    # these come from Newcombe [2] (Table II)
    a_vec = np.array([56,9,6,5,0,0,10,10],dtype=float)
    m_vec = np.array([70,10,7,56,10,10,10,10],dtype=float)
    b_vec = np.array([48,3,2,0,0,0,0,0],dtype=float)
    n_vec = np.array([80,10,7,29,20,10,20,10],dtype=float)
    
    print('\nWilson without CC')
    for (a,m,b,n) in zip(a_vec,m_vec,b_vec,n_vec):
        l, u = dpropci_wilson_nocc(a,m,b,n,alpha=0.05)
        print('{:2.0f}/{:2.0f}-{:2.0f}/{:2.0f} ; {:6.4f} ; {:8.4f}, {:8.4f}'.format(a,m,b,n,a/m-b/n,l,u))
    
    print('\nWilson with CC')
    for (a,m,b,n) in zip(a_vec,m_vec,b_vec,n_vec):
        l, u = dpropci_wilson_cc(a,m,b,n,alpha=0.05)
        print('{:2.0f}/{:2.0f}-{:2.0f}/{:2.0f} ; {:6.4f} ; {:8.4f}, {:8.4f}'.format(a,m,b,n,a/m-b/n,l,u))
    

    HTH

    0 讨论(0)
  • 2021-01-30 05:06

    The accepted solution seems to use a hard-coded z-value (best for performance).

    In the event that you wanted a direct python equivalent of the ruby formula from the blogpost with a dynamic z-value (based on the confidence interval):

    import math
    
    import scipy.stats as st
    
    
    def ci_lower_bound(pos, n, confidence):
        if n == 0:
            return 0
        z = st.norm.ppf(1 - (1 - confidence) / 2)
        phat = 1.0 * pos / n
        return (phat + z * z / (2 * n) - z * math.sqrt((phat * (1 - phat) + z * z / (4 * n)) / n)) / (1 + z * z / n)
    
    0 讨论(0)
  • 2021-01-30 05:12

    If you'd like to actually calculate z directly from a confidence bound and want to avoid installing numpy/scipy, you can use the following snippet of code,

    import math
    
    def binconf(p, n, c=0.95):
      '''
      Calculate binomial confidence interval based on the number of positive and
      negative events observed.  Uses Wilson score and approximations to inverse
      of normal cumulative density function.
    
      Parameters
      ----------
      p: int
          number of positive events observed
      n: int
          number of negative events observed
      c : optional, [0,1]
          confidence percentage. e.g. 0.95 means 95% confident the probability of
          success lies between the 2 returned values
    
      Returns
      -------
      theta_low  : float
          lower bound on confidence interval
      theta_high : float
          upper bound on confidence interval
      '''
      p, n = float(p), float(n)
      N    = p + n
    
      if N == 0.0: return (0.0, 1.0)
    
      p = p / N
      z = normcdfi(1 - 0.5 * (1-c))
    
      a1 = 1.0 / (1.0 + z * z / N)
      a2 = p + z * z / (2 * N)
      a3 = z * math.sqrt(p * (1-p) / N + z * z / (4 * N * N))
    
      return (a1 * (a2 - a3), a1 * (a2 + a3))
    
    
    def erfi(x):
      """Approximation to inverse error function"""
      a  = 0.147  # MAGIC!!!
      a1 = math.log(1 - x * x)
      a2 = (
        2.0 / (math.pi * a)
        + a1 / 2.0
      )
    
      return (
        sign(x) *
        math.sqrt( math.sqrt(a2 * a2 - a1 / a) - a2 )
      )
    
    
    def sign(x):
      if x  < 0: return -1
      if x == 0: return  0
      if x  > 0: return  1
    
    
    def normcdfi(p, mu=0.0, sigma2=1.0):
      """Inverse CDF of normal distribution"""
      if mu == 0.0 and sigma2 == 1.0:
        return math.sqrt(2) * erfi(2 * p - 1)
      else:
        return mu + math.sqrt(sigma2) * normcdfi(p)
    
    0 讨论(0)
  • 2021-01-30 05:13

    I think this one has a wrong wilson call, because if you have 1 up 0 down you get NaN because you can't do a sqrt on the negative value.

    The correct one can be found when looking at the ruby example from the article How not to sort by average page:

    return ((phat + z*z/(2*n) - z * sqrt((phat*(1-phat)+z*z/(4*n))/n))/(1+z*z/n))
    
    0 讨论(0)
提交回复
热议问题