The max product of consecutive elements in an array

后端 未结 8 1505
面向向阳花
面向向阳花 2021-01-30 03:13

I was asked this algorithm question during my onsite interview. Since I was not asked to sign NDA, I post it here for an answer.

Given an array of REAL

相关标签:
8条回答
  • 2021-01-30 03:53

    In O(n) result. Find the consecutive elements that yield max product, by multiplying each element from left to right and saving them in a list. If the new product is bigger than the last multiply the next element and update the list. If not start a new list and repeat. Algorithm in Python 3.3 :

    import numpy as np
    
    x = [-500,-400,200,0.1,-100,20,-10,2]
    
    prod_seq_lists = [[x[0], x[1]]]  # Start assuming the first 2 elements have max product and save them in a list
    product_result = []  # Contains the product of each list
    
    
    for e in x[2:]:  # Start for loop from 3rd element
        if x[0] == 0 or x[1] == 0 or e == 0:  # Raise error if there's a 0
            raise IndexError('Found 0')
    
        temp_b = np.prod(prod_seq_lists[-1])  # Calculate the product of the last list in max_prod_seq
        temp_a = temp_b * e  # Multiply the new_element
    
        if temp_a >= temp_b:  # If last_list*new_element >= last_list
            prod_seq_lists[-1].append(e)  # Append the new_element in your last_list
    
            if e == x[-1]:
                product_result.append(temp_a)  # Save the product of the last list
    
        else:
            product_result.append(temp_b)  # Save the product of each list
            prod_seq_lists.append([e])  # Else, append append the new element in a new_list
    
    
    print("Your array: ", prod_seq_lists)
    print("The list with max product of consecutive elements: ", prod_seq_lists[np.argmax(product_result)])  # Get index of the maximum product and print that list
    print("The max product of consecutive elements: ", max(product_result))
    

    Returns :

    Your array:  [[-50, -40, 20], [0.1], [-100], [20], [-10], [90, 1000]]
    The list with max product of consecutive elements:  [90, 1000]
    The max product of consecutive elements:  90000
    
    0 讨论(0)
  • 2021-01-30 03:55

    Ignoring negative numbers for the moment...

    Let A[i..j] mean A[i]*A[i+1]*...*A[j]

    The problem is to find max(A[i..j])

    Notice that A[i..j] = A[0..j] / A[0..i-1]

    So if we calculate A[0..x] for all x.

    We can then determine max(A[i..j]) = max(A[0..x]) / min(A[0..y])

    0 讨论(0)
  • 2021-01-30 04:02

    You can implement a variant of the Kadane algorithm (http://en.wikipedia.org/wiki/Maximum_subarray_problem) who runs with constant extra memory and linear in the size of the problem (no extra array,...)

    If only strict positive numbers are given:

    def max_subarray_mul(A):
        max_ending_here = max_so_far = 1
        for x in A:
            if x > 0
                max_ending_here = max(1,max_ending_here*x)
                max_so_far = max(max_so_far, max_ending_here)
        return max_so_far
    

    I'm still working on the part with negative numbers

    Or a more expensive (in time) method is the following, but this will work with negative numbers:

    def max_subarray_mul(A):
        max_so_far = 1
        n = length(A)
        for i in 1...n:
            x = A[i]
            tmp = x
            max_so_far = max(max_so_far,tmp)
            for j in i+1...n:
              tmp = tmp*A[j]
              max_so_far = max(max_so_far,tmp)
        return max_so_far
    

    Which runs in constant memory and O(n²) time

    0 讨论(0)
  • 2021-01-30 04:05

    Taking care of the thing if there are no 1's in the array and the product coming should not be 1 in that case. Here is my code:

    #include<bits/stdc++.h>
    using namespace std;
    
    int max(int x, int y)
    { return (y > x)? y : x; }
    int min(int x, int y)
    { return (y < x)? y : x; }
    bool search(int a[],int k,int n)
    {
        for(int i=0;i<n;i++)
        {
            if(a[i]==k)
            return true;
        }
        return false;
    }
    
    int maxSubArrayProduct(int a[], int size)
    {
       int maxpos = 1, minneg=1, i;
       int pro_max = 1;
    
       for (i = 0; i < size; i++)
       {
            if(a[i]<0)
            {
                int temp=maxpos;
                maxpos=max(maxpos,minneg*a[i]);
                minneg=min(minneg,temp*a[i]);
            }
            if(a[i]==0)
            {maxpos=1;minneg=1;}
            if(a[i]>0)
            {
                maxpos=maxpos*a[i];
                minneg=min(minneg,minneg*a[i]);
            }
            if(pro_max<maxpos)
            pro_max=maxpos;
       }
       return pro_max;
    }
    
    /* Driver program to test maxSubArrayProduct */
    int main()
    {
       int a[] =  {-1,0,1};
       int n = sizeof(a)/sizeof(a[0]);
       int start=0,end=0;
       int max_pro = maxSubArrayProduct(a, n);
       if(max_pro==1)
       if(search(a,1,n))max_pro=1;
       else max_pro=0;
       printf("Maximum contiguous product is %d\n", max_pro);
       return 0;
    }
    
    0 讨论(0)
  • 2021-01-30 04:06

    The algorithm is indeed O(n). When iterating the array, use a variable to store the max value found so far, a variable to store the max value of subarray that ends at a[i], and another variable to store minimum value that ends at a[i] to treat negative values.

    float find_maximum(float arr[], int n) {
        if (n <= 0) return NAN;
    
        float max_at = arr[0];  // Maximum value that ends at arr[i]
        float min_at = arr[0];  // Minimum value that ends at arr[i]
        float max_value = max_at;
    
        for (int i = 1; i < n; i++) {
            float prev_max_at = max_at, prev_min_at = min_at;
            max_at = max(arr[i], arr[i] * prev_min_at, arr[i] * prev_max_at);
            min_at = min(arr[i], arr[i] * prev_min_at, arr[i] * prev_max_at);
            max_value = max(max_value, max_at);
        }
        return max_value;
    }
    
    0 讨论(0)
  • 2021-01-30 04:06

    If we want to solve in O(n) and allowed to take two traversals of array and o(n) extra space, my below code would work for all +ve and -ve values in Java.

    import java.util.ArrayList;
    import java.util.List;
    
    public class largestProductOfTwoNumbers {
    
        public static void main(String[] args) {
            int result = 0;
            int a[] = { -22, -5, 12, 6, 3, 4, 9, -11, 4, 5, 6, 8, 7, 7 };
            int max = 0;
    
            int curr = 0;
            List<Integer> list = new ArrayList();
    
            for (int i = 0; i < a.length - 1; i++) {
    
                curr = a[i] * a[i + 1];
                list.add(curr);
    
            }
    
            for (int i = 0; i < list.size(); i++) {
                if (list.get(i) > max) {
                    max = list.get(i);
                }
    
            }
            System.out.println(max);
        }
    } 
    
    0 讨论(0)
提交回复
热议问题