I am looking for a way to graph grid_scores_ from GridSearchCV in sklearn. In this example I am trying to grid search for best gamma and C parameters for an SVR algorithm. My c
The order that the parameter grid is traversed is deterministic, such that it can be reshaped and plotted straightforwardly. Something like this:
scores = [entry.mean_validation_score for entry in grid.grid_scores_]
# the shape is according to the alphabetical order of the parameters in the grid
scores = np.array(scores).reshape(len(C_range), len(gamma_range))
for c_scores in scores:
plt.plot(gamma_range, c_scores, '-')
I used grid search on xgboost with different learning rates, max depths and number of estimators.
gs_param_grid = {'max_depth': [3,4,5],
'n_estimators' : [x for x in range(3000,5000,250)],
'learning_rate':[0.01,0.03,0.1]
}
gbm = XGBRegressor()
grid_gbm = GridSearchCV(estimator=gbm,
param_grid=gs_param_grid,
scoring='neg_mean_squared_error',
cv=4,
verbose=1
)
grid_gbm.fit(X_train,y_train)
To create the graph for error vs number of estimators with different learning rates, I used the following approach:
y=[]
cvres = grid_gbm.cv_results_
best_md=grid_gbm.best_params_['max_depth']
la=gs_param_grid['learning_rate']
n_estimators=gs_param_grid['n_estimators']
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
if params["max_depth"]==best_md:
y.append(np.sqrt(-mean_score))
y=np.array(y).reshape(len(la),len(n_estimators))
%matplotlib inline
plt.figure(figsize=(8,8))
for y_arr, label in zip(y, la):
plt.plot(n_estimators, y_arr, label=label)
plt.title('Error for different learning rates(keeping max_depth=%d(best_param))'%best_md)
plt.legend()
plt.xlabel('n_estimators')
plt.ylabel('Error')
plt.show()
The plot can be viewed here: Result
Note that the graph can similarly be created for error vs number of estimators with different max depth (or any other parameters as per the user's case).
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn import datasets
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
digits = datasets.load_digits()
X = digits.data
y = digits.target
clf_ = SVC(kernel='rbf')
Cs = [1, 10, 100, 1000]
Gammas = [1e-3, 1e-4]
clf = GridSearchCV(clf_,
dict(C=Cs,
gamma=Gammas),
cv=2,
pre_dispatch='1*n_jobs',
n_jobs=1)
clf.fit(X, y)
scores = [x[1] for x in clf.grid_scores_]
scores = np.array(scores).reshape(len(Cs), len(Gammas))
for ind, i in enumerate(Cs):
plt.plot(Gammas, scores[ind], label='C: ' + str(i))
plt.legend()
plt.xlabel('Gamma')
plt.ylabel('Mean score')
plt.show()
Output:
For plotting the results when tuning several hyperparameters, what I did was fixed all parameters to their best value except for one and plotted the mean score for the other parameter for each of its values.
def plot_search_results(grid):
"""
Params:
grid: A trained GridSearchCV object.
"""
## Results from grid search
results = grid.cv_results_
means_test = results['mean_test_score']
stds_test = results['std_test_score']
means_train = results['mean_train_score']
stds_train = results['std_train_score']
## Getting indexes of values per hyper-parameter
masks=[]
masks_names= list(grid.best_params_.keys())
for p_k, p_v in grid.best_params_.items():
masks.append(list(results['param_'+p_k].data==p_v))
params=grid.param_grid
## Ploting results
fig, ax = plt.subplots(1,len(params),sharex='none', sharey='all',figsize=(20,5))
fig.suptitle('Score per parameter')
fig.text(0.04, 0.5, 'MEAN SCORE', va='center', rotation='vertical')
pram_preformace_in_best = {}
for i, p in enumerate(masks_names):
m = np.stack(masks[:i] + masks[i+1:])
pram_preformace_in_best
best_parms_mask = m.all(axis=0)
best_index = np.where(best_parms_mask)[0]
x = np.array(params[p])
y_1 = np.array(means_test[best_index])
e_1 = np.array(stds_test[best_index])
y_2 = np.array(means_train[best_index])
e_2 = np.array(stds_train[best_index])
ax[i].errorbar(x, y_1, e_1, linestyle='--', marker='o', label='test')
ax[i].errorbar(x, y_2, e_2, linestyle='-', marker='^',label='train' )
ax[i].set_xlabel(p.upper())
plt.legend()
plt.show()
Result