I/we chose PIC mostly because there is more peripheral hardware for the same price. And more importantly, you can't even find comparable AVRs. I did choose one of the legacy free versions though (started with PIC18, migrated to dspic33)
The IDE is free, the (C) compiler is free in the student version (that disables optimization after the first month). Entry level programmers are fairly cheap too. If you have heaps of interrupts, counters and timers, there is a chance you won't need optimization at all. A programmer straight from Microchip is $30.
Note that the above remarks about AVR catering more to HLL development are slightly outdated unless you really go for the legacy architectures like PIC12 and 16.
One typically programs the more modern PIC18 (8-bit) and the 16-bit architectures (24F,30F and dspic33 which are based on the same principal core) in C. The 16-bitters even use GCC. There are also MIPS based 32-bitters now, but they rival more with ARM in the audio/video processing scene. Strangely enough, the modern ones are often cheaper than the old ones. Probably they are produced on in a more modern process that has higher yields.
Another note: meanwhile Microchip/PIC bought Atmel/AVR, but I assume that for the first few years that won't affect the productlines much.
I'm really looking forward to the 60MIPs ethernet enabled 16-bitter that is going to be released this summer (afaik streetprice just above EUR 10)