I am new to Haskell but understand how Monad Transformers can be used. Yet, I still have difficulties grabbing their claimed advantage over passing parameters to function calls.
Let's say that we're writing a program that needs some configuration information in the following form:
data Config = C { logFile :: FileName }
One way to write the program is to explicitly pass the configuration around between functions. It would be nice if we only had to pass it to the functions that use it explicitly, but sadly we're not sure if a function might need to call another function that uses the configuration, so we're forced to pass it as a parameter everywhere (indeed, it tends to be the low-level functions that need to use the configuration, which forces us to pass it to all the high-level functions as well).
Let's write the program like that, and then we'll re-write it using the Reader
monad and see what benefit we get.
We end up with something like this:
readLog :: Config -> IO String
readLog (C logFile) = readFile logFile
writeLog :: Config -> String -> IO ()
writeLog (C logFile) message = do x <- readFile logFile
writeFile logFile $ x ++ message
getUserInput :: Config -> IO String
getUserInput config = do input <- getLine
writeLog config $ "Input: " ++ input
return input
runProgram :: Config -> IO ()
runProgram config = do input <- getUserInput config
putStrLn $ "You wrote: " ++ input
Notice that in the high level functions we have to pass config around all the time.
An alternative is to rewrite using the Reader
monad. This complicates the low level functions a bit:
type Program = ReaderT Config IO
readLog :: Program String
readLog = do C logFile <- ask
readFile logFile
writeLog :: String -> Program ()
writeLog message = do C logFile <- ask
x <- readFile logFile
writeFile logFile $ x ++ message
But as our reward, the high level functions are simpler, because we never need to refer to the configuration file.
getUserInput :: Program String
getUserInput = do input <- getLine
writeLog $ "Input: " ++ input
return input
runProgram :: Program ()
runProgram = do input <- getUserInput
putStrLn $ "You wrote: " ++ input
We could re-write the type signatures of getUserInput and runProgram to be
getUserInput :: (MonadReader Config m, MonadIO m) => m String
runProgram :: (MonadReader Config m, MonadIO m) => m ()
which gives us a lot of flexibility for later, if we decide that we want to change the underlying Program
type for any reason. For example, if we want to add modifiable state to our program we could redefine
data ProgramState = PS Int Int Int
type Program a = StateT ProgramState (ReaderT Config IO) a
and we don't have to modify getUserInput
or runProgram
at all - they'll continue to work fine.
N.B. I haven't type checked this post, let alone tried to run it. There may be errors!