What's the difference between a bidirectional LSTM and an LSTM?

后端 未结 5 829
闹比i
闹比i 2021-01-29 20:10

Can someone please explain this? I know bidirectional LSTMs have a forward and backward pass but what is the advantage of this over a unidirectional LSTM?

What is each o

相关标签:
5条回答
  • 2021-01-29 20:30

    It can also be helpful in Time Series Forecasting problems, like predicting the electric consumption of a household. However, we can also use LSTM in this but Bidirectional LSTM will also do a better job in it.

    0 讨论(0)
  • 2021-01-29 20:33

    LSTM in its core, preserves information from inputs that has already passed through it using the hidden state.

    Unidirectional LSTM only preserves information of the past because the only inputs it has seen are from the past.

    Using bidirectional will run your inputs in two ways, one from past to future and one from future to past and what differs this approach from unidirectional is that in the LSTM that runs backwards you preserve information from the future and using the two hidden states combined you are able in any point in time to preserve information from both past and future.

    What they are suited for is a very complicated question but BiLSTMs show very good results as they can understand context better, I will try to explain through an example.

    Lets say we try to predict the next word in a sentence, on a high level what a unidirectional LSTM will see is

    The boys went to ....

    And will try to predict the next word only by this context, with bidirectional LSTM you will be able to see information further down the road for example

    Forward LSTM:

    The boys went to ...

    Backward LSTM:

    ... and then they got out of the pool

    You can see that using the information from the future it could be easier for the network to understand what the next word is.

    0 讨论(0)
  • 2021-01-29 20:42

    Adding to Bluesummer's answer, here is how you would implement Bidirectional LSTM from scratch without calling BiLSTM module. This might better contrast the difference between a uni-directional and bi-directional LSTMs. As you see, we merge two LSTMs to create a bidirectional LSTM.

    You can merge outputs of the forward and backward LSTMs by using either {'sum', 'mul', 'concat', 'ave'}.

    left = Sequential()
    left.add(LSTM(output_dim=hidden_units, init='uniform', inner_init='uniform',
                   forget_bias_init='one', return_sequences=True, activation='tanh',
                   inner_activation='sigmoid', input_shape=(99, 13)))
    right = Sequential()
    right.add(LSTM(output_dim=hidden_units, init='uniform', inner_init='uniform',
                   forget_bias_init='one', return_sequences=True, activation='tanh',
                   inner_activation='sigmoid', input_shape=(99, 13), go_backwards=True))
    
    model = Sequential()
    model.add(Merge([left, right], mode='sum'))
    
    model.add(TimeDistributedDense(nb_classes))
    model.add(Activation('softmax'))
    
    sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd)
    print("Train...")
    model.fit([X_train, X_train], Y_train, batch_size=1, nb_epoch=nb_epoches, validation_data=([X_test, X_test], Y_test), verbose=1, show_accuracy=True)
    
    0 讨论(0)
  • 2021-01-29 20:48

    In comparison to LSTM, BLSTM or BiLSTM has two networks, one access pastinformation in forward direction and another access future in the reverse direction. wiki

    A new class Bidirectional is added as per official doc here: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional

    model = Sequential()
    model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5,
    10)))
    

    and activation function can be added like this:

    model = Sequential()
    model.add(Bidirectional(LSTM(num_channels, 
            implementation = 2, recurrent_activation = 'sigmoid'),
            input_shape=(input_length, input_dim)))
    

    Complete example using IMDB data will be like this.The result after 4 epoch.

    Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz
    17465344/17464789 [==============================] - 4s 0us/step
    Train...
    Train on 25000 samples, validate on 25000 samples
    Epoch 1/4
    25000/25000 [==============================] - 78s 3ms/step - loss: 0.4219 - acc: 0.8033 - val_loss: 0.2992 - val_acc: 0.8732
    Epoch 2/4
    25000/25000 [==============================] - 82s 3ms/step - loss: 0.2315 - acc: 0.9106 - val_loss: 0.3183 - val_acc: 0.8664
    Epoch 3/4
    25000/25000 [==============================] - 91s 4ms/step - loss: 0.1802 - acc: 0.9338 - val_loss: 0.3645 - val_acc: 0.8568
    Epoch 4/4
    25000/25000 [==============================] - 92s 4ms/step - loss: 0.1398 - acc: 0.9509 - val_loss: 0.3562 - val_acc: 0.8606
    

    BiLSTM or BLSTM

    import numpy as np
    from keras.preprocessing import sequence
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Embedding, LSTM, Bidirectional
    from keras.datasets import imdb
    
    
    n_unique_words = 10000 # cut texts after this number of words
    maxlen = 200
    batch_size = 128
    
    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=n_unique_words)
    x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
    x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
    y_train = np.array(y_train)
    y_test = np.array(y_test)
    
    model = Sequential()
    model.add(Embedding(n_unique_words, 128, input_length=maxlen))
    model.add(Bidirectional(LSTM(64)))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    
    print('Train...')
    model.fit(x_train, y_train,
              batch_size=batch_size,
              epochs=4,
              validation_data=[x_test, y_test])
    
    0 讨论(0)
  • 2021-01-29 20:51

    Another use case of bidirectional LSTM might be for word classification in the text. They can see the past and future context of the word and are much better suited to classify the word.

    0 讨论(0)
提交回复
热议问题