Such proof would have to cover all classes of algorithms, like continuous global optimization.
For example, in the 3-SAT problem we have to evaluate variables to fulfill all alternatives of triples of these variables or their negations. Look that x OR y
can be changed into optimizing
((x-1)^2+y^2)((x-1)^2+(y-1)^2)(x^2+(y-1)^2)
and analogously seven terms for alternative of three variables.
Finding the global minimum of a sum of such polynomials for all terms would solve our problem. (source)
It's going out of standard combinatorial techniques to the continuous world using_gradient methods, local minims removing methods, evolutionary algorithms. It's completely different kingdom - numerical analysis - I don't believe such proof could really cover (?)