Detect face then autocrop pictures

前端 未结 11 611
慢半拍i
慢半拍i 2021-01-29 17:44

I am trying to find an app that can detect faces in my pictures, make the detected face centered and crop 720 x 720 pixels of the picture. It is rather very time consuming &

相关标签:
11条回答
  • 2021-01-29 18:17

    I have developed an application "Face-Recognition-with-Own-Data-Set" using the python package ‘face_recognition’ and ‘opencv-python’.

    The source code and installation guide is in the GitHub - Face-Recognition-with-Own-Data-Set

    Or run the source -

    import face_recognition
    import cv2
    import numpy as np
    
    import os
    '''
        Get current working director and create a Data directory to store the faces
    '''
    currentDirectory = os.getcwd()
    dirName = os.path.join(currentDirectory, 'Data')
    print(dirName)
    if not os.path.exists(dirName):
        try:
            os.makedirs(dirName)
        except:
            raise OSError("Can't create destination directory (%s)!" % (dirName))
    '''
        For the given path, get the List of all files in the directory tree 
    '''
    def getListOfFiles(dirName):
        # create a list of file and sub directories
        # names in the given directory
        listOfFile = os.listdir(dirName)
        allFiles = list()
        # Iterate over all the entries
        for entry in listOfFile:
            # Create full path
            fullPath = os.path.join(dirName, entry)
            # If entry is a directory then get the list of files in this directory
            if os.path.isdir(fullPath):
                allFiles = allFiles + getListOfFiles(fullPath)
            else:
                allFiles.append(fullPath)
    
        return allFiles
    
    def knownFaceEncoding(listOfFiles):
        known_face_encodings=list()
        known_face_names=list()
        for file_name in listOfFiles:
            # print(file_name)
            if(file_name.lower().endswith(('.png', '.jpg', '.jpeg'))):
                known_image = face_recognition.load_image_file(file_name)
                # known_face_locations = face_recognition.face_locations(known_image)
                # known_face_encoding = face_recognition.face_encodings(known_image,known_face_locations)
                face_encods = face_recognition.face_encodings(known_image)
                if face_encods:
                    known_face_encoding = face_encods[0]
                    known_face_encodings.append(known_face_encoding)
                    known_face_names.append(os.path.basename(file_name[0:-4]))
        return known_face_encodings, known_face_names
    
    
    # Get the list of all files in directory tree at given path
    listOfFiles = getListOfFiles(dirName)
    known_face_encodings, known_face_names = knownFaceEncoding(listOfFiles)
    
    video_capture = cv2.VideoCapture(0)
    cv2.namedWindow("Video", flags= cv2.WINDOW_NORMAL)
    # cv2.namedWindow("Video")
    
    cv2.resizeWindow('Video', 1024,640)
    cv2.moveWindow('Video', 20,20)
    
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    process_this_frame = True
    
    
    while True:
        # Grab a single frame of video
        ret, frame = video_capture.read()
        # print(ret)
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
    
        k = cv2.waitKey(1)
        # Hit 'c' on capture the image!
        # Hit 'q' on the keyboard to quit!
        if k == ord('q'):
            break
        elif k== ord('c'):
            face_loc = face_recognition.face_locations(rgb_small_frame)
            if face_loc:
                print("Enter Name -")
                name = input()
                img_name = "{}/{}.png".format(dirName,name)
                (top, right, bottom, left)= face_loc[0]
                top *= 4
                right *= 4
                bottom *= 4
                left *= 4
                cv2.imwrite(img_name, frame[top - 5 :bottom + 5,left -5 :right + 5])
                listOfFiles = getListOfFiles(dirName)
                known_face_encodings, known_face_names = knownFaceEncoding(listOfFiles)
    
        # Only process every other frame of video to save time
        if process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
            # print(face_locations)
    
            face_names = []
    
            for face_encoding,face_location in zip(face_encodings,face_locations):
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding, tolerance= 0.55)
                name = "Unknown"
                distance = 0
    
                # use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                #print(face_distances)
                if len(face_distances) > 0:
                    best_match_index = np.argmin(face_distances)
                    if matches[best_match_index]:
                        name = known_face_names[best_match_index]
                        # distance = face_distances[best_match_index]
                #print(face_distances[best_match_index])
                # string_value = '{} {:.3f}'.format(name, distance)
                face_names.append(name)
    
    
        process_this_frame = not process_this_frame
    
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom + 46), (right, bottom+11), (0, 0, 155), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom +40), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    It will create a 'Data' directory in the current location even if this directory does not exist.

    When a face is marked with a rectangle, press 'c' to capture the image and in the command prompt, it will ask for the name of the face. Put the name of the image and enter. You can find this image in the 'Data' directory.

    0 讨论(0)
  • 2021-01-29 18:19

    I have managed to grab bits of code from various sources and stitch this together. It is still a work in progress. Also, do you have any example images?

    '''
    Sources:
    http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
    http://www.lucaamore.com/?p=638
    '''
    
    #Python 2.7.2
    #Opencv 2.4.2
    #PIL 1.1.7
    
    import cv
    import Image
    
    def DetectFace(image, faceCascade):
        #modified from: http://www.lucaamore.com/?p=638
    
        min_size = (20,20)
        image_scale = 1
        haar_scale = 1.1
        min_neighbors = 3
        haar_flags = 0
    
        # Allocate the temporary images
        smallImage = cv.CreateImage(
                (
                    cv.Round(image.width / image_scale),
                    cv.Round(image.height / image_scale)
                ), 8 ,1)
    
        # Scale input image for faster processing
        cv.Resize(image, smallImage, cv.CV_INTER_LINEAR)
    
        # Equalize the histogram
        cv.EqualizeHist(smallImage, smallImage)
    
        # Detect the faces
        faces = cv.HaarDetectObjects(
                smallImage, faceCascade, cv.CreateMemStorage(0),
                haar_scale, min_neighbors, haar_flags, min_size
            )
    
        # If faces are found
        if faces:
            for ((x, y, w, h), n) in faces:
                # the input to cv.HaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                pt1 = (int(x * image_scale), int(y * image_scale))
                pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
                cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)
    
        return image
    
    def pil2cvGrey(pil_im):
        #from: http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
        pil_im = pil_im.convert('L')
        cv_im = cv.CreateImageHeader(pil_im.size, cv.IPL_DEPTH_8U, 1)
        cv.SetData(cv_im, pil_im.tostring(), pil_im.size[0]  )
        return cv_im
    
    def cv2pil(cv_im):
        return Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())
    
    
    pil_im=Image.open('testPics/faces.jpg')
    cv_im=pil2cv(pil_im)
    #the haarcascade files tells opencv what to look for.
    faceCascade = cv.Load('C:/Python27/Lib/site-packages/opencv/haarcascade_frontalface_default.xml')
    face=DetectFace(cv_im,faceCascade)
    img=cv2pil(face)
    img.show()
    

    Testing on the first page of Google (Googled "faces"): enter image description here


    Update

    This code should do exactly what you want. Let me know if you have questions. I tried to include lots of comments in the code:

    '''
    Sources:
    http://opencv.willowgarage.com/documentation/python/cookbook.html
    http://www.lucaamore.com/?p=638
    '''
    
    #Python 2.7.2
    #Opencv 2.4.2
    #PIL 1.1.7
    
    import cv #Opencv
    import Image #Image from PIL
    import glob
    import os
    
    def DetectFace(image, faceCascade, returnImage=False):
        # This function takes a grey scale cv image and finds
        # the patterns defined in the haarcascade function
        # modified from: http://www.lucaamore.com/?p=638
    
        #variables    
        min_size = (20,20)
        haar_scale = 1.1
        min_neighbors = 3
        haar_flags = 0
    
        # Equalize the histogram
        cv.EqualizeHist(image, image)
    
        # Detect the faces
        faces = cv.HaarDetectObjects(
                image, faceCascade, cv.CreateMemStorage(0),
                haar_scale, min_neighbors, haar_flags, min_size
            )
    
        # If faces are found
        if faces and returnImage:
            for ((x, y, w, h), n) in faces:
                # Convert bounding box to two CvPoints
                pt1 = (int(x), int(y))
                pt2 = (int(x + w), int(y + h))
                cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)
    
        if returnImage:
            return image
        else:
            return faces
    
    def pil2cvGrey(pil_im):
        # Convert a PIL image to a greyscale cv image
        # from: http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
        pil_im = pil_im.convert('L')
        cv_im = cv.CreateImageHeader(pil_im.size, cv.IPL_DEPTH_8U, 1)
        cv.SetData(cv_im, pil_im.tostring(), pil_im.size[0]  )
        return cv_im
    
    def cv2pil(cv_im):
        # Convert the cv image to a PIL image
        return Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())
    
    def imgCrop(image, cropBox, boxScale=1):
        # Crop a PIL image with the provided box [x(left), y(upper), w(width), h(height)]
    
        # Calculate scale factors
        xDelta=max(cropBox[2]*(boxScale-1),0)
        yDelta=max(cropBox[3]*(boxScale-1),0)
    
        # Convert cv box to PIL box [left, upper, right, lower]
        PIL_box=[cropBox[0]-xDelta, cropBox[1]-yDelta, cropBox[0]+cropBox[2]+xDelta, cropBox[1]+cropBox[3]+yDelta]
    
        return image.crop(PIL_box)
    
    def faceCrop(imagePattern,boxScale=1):
        # Select one of the haarcascade files:
        #   haarcascade_frontalface_alt.xml  <-- Best one?
        #   haarcascade_frontalface_alt2.xml
        #   haarcascade_frontalface_alt_tree.xml
        #   haarcascade_frontalface_default.xml
        #   haarcascade_profileface.xml
        faceCascade = cv.Load('haarcascade_frontalface_alt.xml')
    
        imgList=glob.glob(imagePattern)
        if len(imgList)<=0:
            print 'No Images Found'
            return
    
        for img in imgList:
            pil_im=Image.open(img)
            cv_im=pil2cvGrey(pil_im)
            faces=DetectFace(cv_im,faceCascade)
            if faces:
                n=1
                for face in faces:
                    croppedImage=imgCrop(pil_im, face[0],boxScale=boxScale)
                    fname,ext=os.path.splitext(img)
                    croppedImage.save(fname+'_crop'+str(n)+ext)
                    n+=1
            else:
                print 'No faces found:', img
    
    def test(imageFilePath):
        pil_im=Image.open(imageFilePath)
        cv_im=pil2cvGrey(pil_im)
        # Select one of the haarcascade files:
        #   haarcascade_frontalface_alt.xml  <-- Best one?
        #   haarcascade_frontalface_alt2.xml
        #   haarcascade_frontalface_alt_tree.xml
        #   haarcascade_frontalface_default.xml
        #   haarcascade_profileface.xml
        faceCascade = cv.Load('haarcascade_frontalface_alt.xml')
        face_im=DetectFace(cv_im,faceCascade, returnImage=True)
        img=cv2pil(face_im)
        img.show()
        img.save('test.png')
    
    
    # Test the algorithm on an image
    #test('testPics/faces.jpg')
    
    # Crop all jpegs in a folder. Note: the code uses glob which follows unix shell rules.
    # Use the boxScale to scale the cropping area. 1=opencv box, 2=2x the width and height
    faceCrop('testPics/*.jpg',boxScale=1)
    

    Using the image above, this code extracts 52 out of the 59 faces, producing cropped files such as: enter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description here

    0 讨论(0)
  • 2021-01-29 18:23

    Just adding to @Israel Abebe's version. If you add a counter before image extension the algorithm will give all the faces detected. Attaching the code, same as Israel Abebe's. Just adding a counter and accepting the cascade file as an argument. The algorithm works beautifully! Thanks @Israel Abebe for this!

    import cv2
    import os
    import sys
    
    def facecrop(image):
    facedata = sys.argv[1]
    cascade = cv2.CascadeClassifier(facedata)
    
    img = cv2.imread(image)
    
    minisize = (img.shape[1],img.shape[0])
    miniframe = cv2.resize(img, minisize)
    
    faces = cascade.detectMultiScale(miniframe)
    counter = 0
    for f in faces:
        x, y, w, h = [ v for v in f ]
        cv2.rectangle(img, (x,y), (x+w,y+h), (255,255,255))
    
        sub_face = img[y:y+h, x:x+w]
        fname, ext = os.path.splitext(image)
        cv2.imwrite(fname+"_cropped_"+str(counter)+ext, sub_face)
        counter += 1
    return
    
    facecrop("Face_detect_1.jpg")
    

    PS: Adding as answer. Was not able to add comment because of points issue.

    0 讨论(0)
  • 2021-01-29 18:26

    I think the best option is Google Vision API. It's updated, it uses machine learning and it improves with the time.

    You can check the documentation for examples: https://cloud.google.com/vision/docs/other-features

    0 讨论(0)
  • 2021-01-29 18:27

    I used this shell command:

    for f in *.jpg;do PYTHONPATH=/usr/local/lib/python2.7/site-packages python -c 'import cv2;import sys;rects=cv2.CascadeClassifier("/usr/local/opt/opencv/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml").detectMultiScale(cv2.cvtColor(cv2.imread(sys.argv[1]),cv2.COLOR_BGR2GRAY),1.3,5);print("\n".join([" ".join([str(item) for item in row])for row in rects]))' $f|while read x y w h;do convert $f -gravity NorthWest -crop ${w}x$h+$x+$y ${f%jpg}-$x-$y.png;done;done

    You can install opencv and imagemagick on OS X with brew install opencv imagemagick.

    0 讨论(0)
提交回复
热议问题