I have found an Answer on link about why some languages are faster and some are slower, I hope this will clear more about why C or C++ is faster than others, There are some other languages also that is faster than C, but we can not use all of them. Some explaination -
One of the big reasons that Fortran remains important is because it's fast: number crunching routines written in Fortran tend to be quicker than equivalent routines written in most other languages. The languages that are competing with Fortran in this space—C and C++—are used because they're competitive with this performance.
This raises the question: why? What is it about C++ and Fortran that make them fast, and why do they outperform other popular languages, such as Java or Python?
Interpreting versus compiling
There are many ways to categorize and define programming languages, according to the style of programming they encourage and features they offer. When looking at performance, the biggest single distinction is between interpreted languages and compiled ones.
The divide is not hard; rather, there's a spectrum. At one end, we have traditional compiled languages, a group that includes Fortran, C, and C++. In these languages, there is a discrete compilation stage that translates the source code of a program into an executable form that the processor can use.
This compilation process has several steps. The source code is analyzed and parsed. Basic coding mistakes such as typos and spelling errors can be detected at this point. The parsed code is used to generate an in-memory representation, which too can be used to detect mistakes—this time, semantic mistakes, such as calling functions that don't exist, or trying to perform arithmetic operations on strings of text.
This in-memory representation is then used to drive a code generator, the part that produces executable code. Code optimization, to improve the performance of the generated code, is performed at various times within this process: high-level optimizations can be performed on the code representation, and lower-level optimizations are used on the output of the code generator.
Actually executing the code happens later. The entire compilation process is simply used to create something that can be executed.
At the opposite end, we have interpreters. The interpreters will include a parsing stage similar to that of the compiler, but this is then used to drive direct execution, with the program being run immediately.
The simplest interpreter has within it executable code corresponding to the various features the language supports—so it will have functions for adding numbers, joining strings, whatever else a given language has. As it parses the code, it will look up the corresponding function and execute it. Variables created in the program will be kept in some kind of lookup table that maps their names to their data.
The most extreme example of the interpreter style is something like a batch file or shell script. In these languages, the executable code is often not even built into the interpreter itself, but rather separate, standalone programs.
So why does this make a difference to performance? In general, each layer of indirection reduces performance. For example, the fastest way to add two numbers is to have both of those numbers in registers in the processor, and to use the processor's add instruction. That's what compiled programs can do; they can put variables into registers and take advantage of processor instructions. But in interpreted programs, that same addition might require two lookups in a table of variables to fetch the values to add, then calling a function to perform the addition. That function may very well use the same processor instruction as the compiled program uses to perform the actual addition, but all the extra work before the instruction can actually be used makes things slower.
If you want to know more please check the Source