Many of these answers give valid reasons for why C is, or is not, faster (either in general or in specific scenarios). It's undeniable that:
- Many other languages provide automatic features that we take for granted. Bounds checking, run-time type checking, and automatic memory management, for example, don't come for free. There is at least some cost associated with these features, which we may not think about—or even realize—while writing code that uses these features.
- The step from source to machine is often not as direct in other languages as it is in C.
- OTOH, to say that compiled C code executes faster than other code written in other languages is a generalization that isn't always true. Counter-examples are easy to find (or contrive).
All of this notwithstanding, there is something else I have noticed that, I think, affects the comparative performance of C vs. many other languages more greatly than any other factor. To wit:
Other languages often make it easier to write code that executes more slowly. Often, it's even encouraged by the design philosophies of the language. Corollary: a C programmer is more likely to write code that doesn't perform unnecessary operations.
As an example, consider a simple Windows program in which a single main window is created. A C version would populate a WNDCLASS[EX]
structure which would be passed to RegisterClass[Ex]
, then call CreateWindow[Ex]
and enter a message loop. Highly simplified and abbreviated code follows:
WNDCLASS wc;
MSG msg;
wc.style = 0;
wc.lpfnWndProc = &WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = NULL;
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hbrBackground = (HBRUSH)(COLOR_BTNFACE + 1);
wc.lpszMenuName = NULL;
wc.lpszClassName = "MainWndCls";
RegisterClass(&wc);
CreateWindow("MainWndCls", "", WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);
while(GetMessage(&msg, NULL, 0, 0)){
TranslateMessage(&msg);
DispatchMessage(&msg);
}
An equivalent program in C# could be just one line of code:
Application.Run(new Form());
This one line of code provides all of the functionality that nearly 20 lines of C code did, and adds some things we left out, such as error checking. The richer, fuller library (compared to those used in a typical C project) did a lot of work for us, freeing our time to write many more snippets of code that look short to us but involve many steps behind the scenes.
But a rich library enabling easy and quick code bloat isn't really my point. My point is more apparent when you start examining what actually happens when our little one-liner actually executes. For fun sometime, enable .NET source access in Visual Studio 2008 or higher, and step into the simple one-linef above. One of the fun little gems you'll come across is this comment in the getter for Control.CreateParams
:
// In a typical control this is accessed ten times to create and show a control.
// It is a net memory savings, then, to maintain a copy on control.
//
if (createParams == null) {
createParams = new CreateParams();
}
Ten times. The information roughly equivalent to the sum of what's stored in a WNDCLASSEX
structure and what's passed to CreateWindowEx
is retrieved from the Control
class ten times before it's stored in a WNDCLASSEX
structure and passed on to RegisterClassEx
and CreateWindowEx
.
All in all, the number of instructions executed to perform this very basic task is 2–3 orders of magnitude more in C# than in C. Part of this is due to the use of a feature-rich library, which is necessarily generalized, versus our simple C code which does exactly what we need and nothing more. But part of it is due to the fact that the modularized, object-oriented nature of .NET framework, lends itself to a lot of repetition of execution that often is avoided by a procedural approach.
I'm not trying to pick on C# or the .NET framework. Nor am I saying that modularization, generalization, library/language features, OOP, etc. are bad things. I used to do most of my development in C, later in C++, and most lately in C#. Similarly, before C, I used mostly assembly. And with each step "higher" my language goes, I write better, more maintainable, more robust programs in less time. They do, however, tend to execute a little more slowly.