Creating confusion matrix from multiple .csv files

前端 未结 2 1613
醉话见心
醉话见心 2021-01-28 07:20

I have a lot of .csv files with the following format.

338,800
338,550
339,670
340,600 
327,500
301,430
299,350
284,339
284,338
283,335
283,330
283,310
282,310
         


        
相关标签:
2条回答
  • 2021-01-28 07:45

    Add a def get_predict(filename)

    def get_predict(filename):
        if 'Alex' in filename:
            return 'Alexander'
        else:
            return filename [0]
    

    Reading n files, compute confusion matrix using pandas crosstab:

    import os
    import pandas as pd
    
    def get_category(filepath):
        def category(val):
            print('predict({}; abs({})'.format(val, abs(val)))
            if 0.8 < val <= 0.9:
                return "A"
            if abs(val - 0.7) < 1e-10:
                return "B"
            if 0.5 < val < 0.7:
                return "C"
            if abs(val - 0.5) < 1e-10:
                return "E"
            return "D"
    
        with open(filepath, "r") as csvfile:
            ff = csv.reader(csvfile)
    
            results = []
            previous_value = 0
            for col1, col2 in ff:
                value = int(col1)
                if value >= previous_value:
                    previous_value = value
                else:
                    results.append(value / previous_value)
                    previous_value = value
    
        return category(sum(results) / len(results))
    
    matrix = {'actual':[], 'predict':[]}
    path = 'test/confusion'
    for filename in os.listdir( path ):
        # The first Char in filename is Predict Key
        matrix['predict'].append(filename[0])
        matrix['actual'].append(get_category(os.path.join(path, filename)))
    
    df = pd.crosstab(pd.Series(matrix['actual'], name='Actual'),
                     pd.Series(matrix['predict'], name='Predicted')
                     )
    print(df)
    

    Output: (Reading "A.csv, B.csv, C.csv" with the given example Data three times)

    Predicted  A  B  C
    Actual            
    A          3  0  0
    B          0  3  0
    C          0  0  3
    

    Tested with Python:3.4.2 - pandas:0.19.2

    0 讨论(0)
  • 2021-01-28 07:48

    Using Scikit-Learn is the best option to go for in your case as it provides a confusion_matrix function. Here is an approach you can easily extend.

    from sklearn.metrics import confusion_matrix
    
    # Read your csv files
    with open('A1.csv', 'r') as readFile:
        true_values = [int(ff) for ff in readFile]
    with open('B1.csv', 'r') as readFile:
        predictions = [int(ff) for ff in readFile]
    
    # Produce the confusion matrix
    confusionMatrix = confusion_matrix(true_values, predictions)
    
    print(confusionMatrix)
    

    This is the output you would expect.

    [[0 2]
     [0 2]]
    

    For more hint - check out the following link:

    How to write a confusion matrix in Python?

    0 讨论(0)
提交回复
热议问题