I am a beginner with R. I have a data set on air pollution. The columns are site, measured concentration and 80 variables (v1-v80) that might influence the concentration. I wan
library(broom)
glance(model)[c(1,2)]
Input = ("site concentration v1 v2 v3
1 1 -0.84085548 1.7114409 -0.2857736 -1.0803926
2 2 1.38435934 -0.6029080 0.1381082 -0.1575344
3 3 -1.25549186 -0.4721664 1.2276303 -1.0717600")
df = read.table(textConnection(Input),header=TRUE)
for (j in names(df)){
model <- lm(concentration ~ df[[j]], data = df)
print(j)
print(glance(model)[c(1,2)])
}
[1] "site"
r.squared adj.r.squared
1 0.02132635 -0.9573473
[1] "concentration"
r.squared adj.r.squared
1 1 1
[1] "v1"
r.squared adj.r.squared
1 0.1717716 -0.6564568
[1] "v2"
r.squared adj.r.squared
1 0.1482473 -0.7035055
[1] "v3"
r.squared adj.r.squared
1 0.9762587 0.9525174
Warning message:
In stats::summary.lm(x) :
essentially perfect fit: summary may be unreliable
Using base R
summary(model)$adj.r.squared
summary(model)$r.squared