Calculating percentile for each gridpoint in xarray

前端 未结 2 1645
离开以前
离开以前 2021-01-28 03:02

I am currently using xarray to make probability maps. I want to use a statistical assessment like a “counting” exercise. Meaning, for all data points in NEU count how many time

相关标签:
2条回答
  • 2021-01-28 03:30

    I'm not sure how you want to process quantiles, but here is a version from which you may be able to adapt.

    Also, I chose to keep the dataset structure when computing the quantiles, as it shows how to retrieve the values of the outliers if this is ever relevant (and it is one step away from retrieving the values of valid data points, which is likely relevant).

    1. Create some data

    coords = ("time", "latitude", "longitude")
    sizes = (500, 80, 120)
    
    ds = xr.Dataset(
        coords={c: np.arange(s) for c, s in zip(coords, sizes)},
        data_vars=dict(
            precipitation=(coords, np.random.randn(*sizes)),
            temperature=(coords, np.random.randn(*sizes)),
        ),
    )
    

    View of the data:

    <xarray.Dataset>
    Dimensions:        (latitude: 80, longitude: 120, time: 500)
    Coordinates:
      * time           (time) int64 0 1 2 3 ... 496 497 498 499
      * latitude       (latitude) int64 0 1 2 3 ... 76 77 78 79
      * longitude      (longitude) int64 0 1 2 3 ... 117 118 119
    Data variables:
        precipitation  (time, latitude, longitude) float64 -1.673 ... -0.3323
        temperature    (time, latitude, longitude) float64 -0.331 ... -0.03728
    

    2. Compute quantiles

    qt_dims = ("latitude", "longitude")
    qt_values = (0.1, 0.9)
    
    ds_qt = ds.quantile(qt_values, dim=qt_dims)
    

    It is a Dataset, with dimensions of analysis ("latitude", "longitude") lost, and with a new "quantile" dimension:

    <xarray.Dataset>
    Dimensions:        (quantile: 2, time: 500)
    Coordinates:
      * time           (time) int64 0 1 2 3 ... 496 497 498 499
      * quantile       (quantile) float64 0.1 0.9
    Data variables:
        precipitation  (quantile, time) float64 -1.305 ... 1.264
        temperature    (quantile, time) float64 -1.267 ... 1.254
    

    3. Compute outliers co-occurrence

    For the locations of outliers: (edit: use of np.logical_and, more readable than the & operator)

    da_outliers_loc = np.logical_and(
        ds.precipitation > ds_qt.precipitation.sel(quantile=qt_values[0]),
        ds.temperature > ds_qt.temperature.sel(quantile=qt_values[1]),
    )
    

    The output is a boolean DataArray:

    <xarray.DataArray (time: 500, latitude: 80, longitude: 120)>
    array([[[False, ...]]])
    Coordinates:
      * time       (time) int64 0 1 2 3 4 ... 496 497 498 499
      * latitude   (latitude) int64 0 1 2 3 4 ... 75 76 77 78 79
      * longitude  (longitude) int64 0 1 2 3 ... 116 117 118 119
    

    And if ever the values are relevant:

    ds_outliers = ds.where(
        (ds.precipitation > ds_qt.precipitation.sel(quantile=qt_values[0]))
        & (ds.temperature > ds_qt.temperature.sel(quantile=qt_values[1]))
    )
    

    4. Count outliers per timestep

    outliers_count = da_outliers_loc.sum(dim=qt_dims)
    

    Finally, here is the DataArray with only a time dimension, and having for values the number of outliers at each timestamp.

    <xarray.DataArray (time: 500)>
    array([857, ...])
    Coordinates:
      * time     (time) int64 0 1 2 3 4 ... 495 496 497 498 499
    
    0 讨论(0)
  • 2021-01-28 03:35

    np.nanpercentile by default works on a flattened array, however, in this case, the goal is to reduce only the first dimension generating a 2D array containing the result at each gridpoint. To achieve this, the axis argument of nanpercentile can be used:

    np.nanpercentile(NEU.rr, 1, axis=0)
    

    This however will remove the labeled dimensions and coordinates. It is to preserve the dims and coords that apply_ufunc has to be used, it does not vectorize the functions for you.

    xr.apply_ufunc(
        lambda x: np.nanpercentile(x, 1, axis=-1), NEU.rr, input_core_dims=[["time"]]
    )
    

    Note how now the axis is -1 and we are using input_core_dims which tells apply_ufunc this dimension will be reduced and also moves it to the last position (hence the -1). For a more detailed explanation on apply_ufunc, this other answer may help.

    0 讨论(0)
提交回复
热议问题