I am currently using xarray to make probability maps. I want to use a statistical assessment like a “counting” exercise. Meaning, for all data points in NEU count how many time
I'm not sure how you want to process quantiles, but here is a version from which you may be able to adapt.
Also, I chose to keep the dataset structure when computing the quantiles, as it shows how to retrieve the values of the outliers if this is ever relevant (and it is one step away from retrieving the values of valid data points, which is likely relevant).
coords = ("time", "latitude", "longitude")
sizes = (500, 80, 120)
ds = xr.Dataset(
coords={c: np.arange(s) for c, s in zip(coords, sizes)},
data_vars=dict(
precipitation=(coords, np.random.randn(*sizes)),
temperature=(coords, np.random.randn(*sizes)),
),
)
View of the data:
<xarray.Dataset>
Dimensions: (latitude: 80, longitude: 120, time: 500)
Coordinates:
* time (time) int64 0 1 2 3 ... 496 497 498 499
* latitude (latitude) int64 0 1 2 3 ... 76 77 78 79
* longitude (longitude) int64 0 1 2 3 ... 117 118 119
Data variables:
precipitation (time, latitude, longitude) float64 -1.673 ... -0.3323
temperature (time, latitude, longitude) float64 -0.331 ... -0.03728
qt_dims = ("latitude", "longitude")
qt_values = (0.1, 0.9)
ds_qt = ds.quantile(qt_values, dim=qt_dims)
It is a Dataset, with dimensions of analysis ("latitude", "longitude") lost, and with a new "quantile" dimension:
<xarray.Dataset>
Dimensions: (quantile: 2, time: 500)
Coordinates:
* time (time) int64 0 1 2 3 ... 496 497 498 499
* quantile (quantile) float64 0.1 0.9
Data variables:
precipitation (quantile, time) float64 -1.305 ... 1.264
temperature (quantile, time) float64 -1.267 ... 1.254
For the locations of outliers:
(edit: use of np.logical_and
, more readable than the &
operator)
da_outliers_loc = np.logical_and(
ds.precipitation > ds_qt.precipitation.sel(quantile=qt_values[0]),
ds.temperature > ds_qt.temperature.sel(quantile=qt_values[1]),
)
The output is a boolean DataArray:
<xarray.DataArray (time: 500, latitude: 80, longitude: 120)>
array([[[False, ...]]])
Coordinates:
* time (time) int64 0 1 2 3 4 ... 496 497 498 499
* latitude (latitude) int64 0 1 2 3 4 ... 75 76 77 78 79
* longitude (longitude) int64 0 1 2 3 ... 116 117 118 119
And if ever the values are relevant:
ds_outliers = ds.where(
(ds.precipitation > ds_qt.precipitation.sel(quantile=qt_values[0]))
& (ds.temperature > ds_qt.temperature.sel(quantile=qt_values[1]))
)
outliers_count = da_outliers_loc.sum(dim=qt_dims)
Finally, here is the DataArray with only a time dimension, and having for values the number of outliers at each timestamp.
<xarray.DataArray (time: 500)>
array([857, ...])
Coordinates:
* time (time) int64 0 1 2 3 4 ... 495 496 497 498 499
np.nanpercentile by default works on a flattened array, however, in this case, the goal is to reduce only the first dimension generating a 2D array containing the result at each gridpoint. To achieve this, the axis
argument of nanpercentile
can be used:
np.nanpercentile(NEU.rr, 1, axis=0)
This however will remove the labeled dimensions and coordinates. It is to preserve the dims and coords that apply_ufunc
has to be used, it does not vectorize the functions for you.
xr.apply_ufunc(
lambda x: np.nanpercentile(x, 1, axis=-1), NEU.rr, input_core_dims=[["time"]]
)
Note how now the axis is -1
and we are using input_core_dims
which tells apply_ufunc
this dimension will be reduced and also moves it to the last position (hence the -1
). For a more detailed explanation on apply_ufunc
, this other answer may help.