Python extract elements from Json string

前端 未结 3 619
小蘑菇
小蘑菇 2021-01-28 01:42

I have a Json string from which I\'m able to extract few components like formatted_address,lat,lng, but I\'m unable to extract feature(val

相关标签:
3条回答
  • 2021-01-28 02:17

    You need to understand schema of your data.

    Error in json_st['results']['address_components']

    because json_st['results'] is an array

    Check it here http://jsoneditoronline.org

    Here is some sample

    for result in data['results']:
        print type(result)
        for address_component in result['address_components']:
            print type(address_component)
            print address_component['long_name']
            print address_component['short_name']
            for _type in address_component['types']:
                print _type
    
    0 讨论(0)
  • 2021-01-28 02:20

    I would go for json_normalize, thought of one line answer but I dont think its possible i.e (Here I did only for px_val and py_val you can do similar things for other columns)

    from pandas.io.json import json_normalize
    
    import pandas as pd
    import json
    
    with open('dat.json') as f:
        data = json.load(f)
    
    result = json_normalize(data,'results')
    
    result['px_val'] = result['geometry'].apply(json_normalize).apply(lambda x : x['location.lat'])
    result['py_val'] = result['geometry'].apply(json_normalize).apply(lambda x : x['location.lng'])
    
    print(result[['formatted_address','px_val','py_val']])
    
                                  formatted_address        px_val      py_val
    0  Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...  19.109659  72.867471
    1  82, Bamanpuri, Ajit Nagar, J B Nagar, Andheri ...  19.109749  72.867249
    2  Todi Building, Sheth Bhavanidas Benani Marg, K...  19.109827  72.867789
    3  KASI APARTMENTS, Shriniwas Bagarka Rd, Bamanpu...  19.109334  72.867052
    4  Silver Line Apts., Bamanpuri, J.B. Nagar, J B ...  19.109108  72.867078
    5  Gokul panch chs, 81-B, 81-B, Sheth Bhavanidas ...  19.109871  72.867057
    6  Ajit Nagar, J B Nagar, Andheri East, Mumbai, M...  19.110316  72.868073
    7  Bamanpuri, J B Nagar, Andheri East, Mumbai, Ma...  19.108435  72.865749
    8  J B Nagar, Andheri East, Mumbai, Maharashtra 4...  19.111062  72.865592
    9           Andheri East, Mumbai, Maharashtra, India  19.115491  72.872695
    

    I try to parse political certainly not proud of this solution i.e

    pol = []
    for i in result['address_components'].apply(json_normalize):
         pol.append(','.join(i.apply(lambda x : x['long_name'] if 'political' in x['types'] else np.nan,1).dropna()))
    
    result['political'] = pol
    

    Output result['political']

    0    Kanti Nagar,J B Nagar,Andheri East,Mumbai,Mumb...
    1    Bamanpuri,Ajit Nagar,J B Nagar,Andheri East,Mu...
    2    Kanti Nagar,J B Nagar,Andheri East,Mumbai,Mumb...
    3    Bamanpuri,Kanti Nagar,J B Nagar,Andheri East,M...
    4    Bamanpuri,J.B. Nagar,J B Nagar,Andheri East,Mu...
    5    Bamanpuri,Ajit Nagar,J B Nagar,Andheri East,Mu...
    6    Ajit Nagar,J B Nagar,Andheri East,Mumbai,Mumba...
    7    Bamanpuri,J B Nagar,Andheri East,Mumbai,Mumbai...
    8    J B Nagar,Andheri East,Mumbai,Mumbai Suburban,...
    9    Andheri East,Mumbai,Mumbai Suburban,Maharashtr...
    Name: political, dtype: object
    

    To convert it to a method we can do

    def get_cols(st):
        pol = []
        for i in result['address_components'].apply(json_normalize):
             pol.append(','.join(i.apply(lambda x : x['long_name'] if st in x['types'] else np.nan,1).dropna()))
    
       return  pol
    
    result['political'] = get_cols('political') 
    # This will assign the new column political with data. 
    
    0 讨论(0)
  • 2021-01-28 02:23

    This is rather a pretty broad question...

    To help you to start:

    record_path = ['address_components']
    
    meta= [
      'formatted_address',
      ['geometry','location','lat'],
      ['geometry','location','lng'],  
    ]
    
    x = pd.io.json.json_normalize(d['results'], record_path, meta)
    

    Result:

    In [20]: pd.options.display.max_rows = 15
    
    In [21]: x
    Out[21]:
              long_name       short_name                                          types  \
    0       Satya Niwas      Satya Niwas    [establishment, point_of_interest, premise]
    1       Kanti Nagar      Kanti Nagar  [political, sublocality, sublocality_level_3]
    2         J B Nagar        J B Nagar  [political, sublocality, sublocality_level_2]
    3      Andheri East     Andheri East  [political, sublocality, sublocality_level_1]
    4            Mumbai           Mumbai                          [locality, political]
    5   Mumbai Suburban  Mumbai Suburban       [administrative_area_level_2, political]
    6       Maharashtra               MH       [administrative_area_level_1, political]
    ..              ...              ...                                            ...
    83            India               IN                           [country, political]
    84           400047           400047                                  [postal_code]
    85     Andheri East     Andheri East  [political, sublocality, sublocality_level_1]
    86           Mumbai           Mumbai                          [locality, political]
    87  Mumbai Suburban  Mumbai Suburban       [administrative_area_level_2, political]
    88      Maharashtra               MH       [administrative_area_level_1, political]
    89            India               IN                           [country, political]
    
                                        formatted_address  geometry.location.lat  geometry.location.lng
    0   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    1   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    2   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    3   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    4   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    5   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    6   Satya Niwas, Kanti Nagar, J B Nagar, Andheri E...              19.109659              72.867471
    ..                                                ...                    ...                    ...
    83  J B Nagar, Andheri East, Mumbai, Maharashtra 4...              19.111062              72.865592
    84  J B Nagar, Andheri East, Mumbai, Maharashtra 4...              19.111062              72.865592
    85           Andheri East, Mumbai, Maharashtra, India              19.115491              72.872695
    86           Andheri East, Mumbai, Maharashtra, India              19.115491              72.872695
    87           Andheri East, Mumbai, Maharashtra, India              19.115491              72.872695
    88           Andheri East, Mumbai, Maharashtra, India              19.115491              72.872695
    89           Andheri East, Mumbai, Maharashtra, India              19.115491              72.872695
    
    [90 rows x 6 columns]
    
    0 讨论(0)
提交回复
热议问题