I am a bit new to Python programming. I have a small requirement where in I need to list down all customers and their amounts for a given fortnight in a JSON format.
Cu
Start by grouping on both the Parameter and FortNight columns, and using .to_dict()
on the resulting grouped rows to produce the inner-most dictionaries:
details = df.groupby(['Parameter', 'FortNight']).apply(
lambda r: r[['Customer', 'Amount']].to_dict(orient='records'))
This gives you a series with a multi-index over Parameter
and FortNight
, and the values are all the lists in the correct format, each entry a dictionary with Customer
and Amount
columns. If you need to convert the value types, do so on the r[['Customer', 'Amount']]
dataframe result before calling to_dict()
on it.
You can then unstack the series into a dataframe, giving you a nested Parameter -> FortNight -> details structure; the Parameter values become columns, each list of Customer / Amount dictionaries indexed by FortNight:
nested = details.unstack('Parameter')
If you turn this into a dictionary, you'd get a dictionary that's mostly correct already:
>>> pprint(grouped.unstack('Parameter').to_dict())
{'CustomerSales': {'Apr-2FN-2018': [{'Amount': 339632.0, 'Customer': '10992'},
{'Amount': 27282.0, 'Customer': '10994'},
{'Amount': 26353.0, 'Customer': '10995'},
{'Amount': 24797.0, 'Customer': '11000'},
{'Amount': 21093.0, 'Customer': '10990'}]}}
but for your format, you'd convert the values in each column to a list of {'FortNight': indexvalue, 'Details': value}
mappings, then converting the whole structure to a dictionary:
output = nested.apply(lambda s: [
{s.index.name: idx, 'Details': value}
for idx, value in s.items()
]).to_dict('records')
This gives you your final output:
>>> pprint(output)
[{'CustomerSales': {'Details': [{'Amount': 339632.0, 'Customer': '10992'},
{'Amount': 27282.0, 'Customer': '10994'},
{'Amount': 26353.0, 'Customer': '10995'},
{'Amount': 24797.0, 'Customer': '11000'},
{'Amount': 21093.0, 'Customer': '10990'}],
'FortNight': 'Apr-2FN-2018'}}]
If you need a JSON document, use .to_json(orient='records')
rather than .to_dict('records')
.
Put together as one expression:
df.groupby(['Parameter', 'FortNight']).apply(
lambda r: r[['Customer', 'Amount']].to_dict(orient='records')
).unstack('Parameter').apply(lambda s: [
{s.index.name: idx, 'Details': value}
for idx, value in s.items()]
).to_json(orient='records')