I am learning how the quasi-separation affects R binomial GLM. And I start to think that it does not matter in some circumstance.
In my understanding, we say th
You have constructed an interesting example but you are not testing a model that actually examines the situation that you are describing as quasi-separation. When you say: "when x1=1 and x2=1 (obs 3) the data always fails.", you are implying the need for an interaction term in the model. Notice that this produces a "more interesting" result:
> summary(glm(cbind(fail,nofail)~x1*x2,data=data,family=binomial))
Call:
glm(formula = cbind(fail, nofail) ~ x1 * x2, family = binomial,
data = data)
Deviance Residuals:
[1] 0 0 0 0
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.367e-17 1.414e-01 0.000 1
x1 2.675e-17 2.000e-01 0.000 1
x2 2.965e-17 2.000e-01 0.000 1
x1:x2 2.731e+01 5.169e+04 0.001 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1.2429e+02 on 3 degrees of freedom
Residual deviance: 2.7538e-10 on 0 degrees of freedom
AIC: 25.257
Number of Fisher Scoring iterations: 22
One generally needs to be very suspect of beta coefficients of 2.731e+01: The implicit odds ratio i:
> exp(2.731e+01)
[1] 725407933166
In this working environment there really is no material difference between Inf and 725,407,933,166.