Bubble sort with variable number of inputs

后端 未结 2 562
不知归路
不知归路 2021-01-27 13:27

I am working on a bubble sort program for the Little Man Computer and I want it to have a variable number of inputs (like 500), after which the program will stop taking inputs a

相关标签:
2条回答
  • 2021-01-27 13:47
    This is the final code and some basic information.
    
    // Basic Outline
    // 1) Initialize (may be empty)
    // 2) Input Count
    // 3) Handle Special Cases, GoTo 1 (will now be no special cases)
    // 4) Input List
    // 5) Sort the list (using Bubblesort)
    // 6) Output List
    // 7) GoTo 1
    //
    // Program uses an LMCe, same as an LMC except that it has an extra digit. 
    //The number of memory cells is thus 1000 and the range of values is from 0 to 9999.
    //
    // Memory Map
    //
    // 0 – 79 the program
    // 80-87 unused (may be used to test sorting in LMCs)
    // 88-99 constants and variables
    // 100 – 999 the list to be sorted.
    //
    // INITIALIZE (This section is blank)
    //
    // INPUT COUNT
    //
    000 IN 9001 // input count
    001 STO 090 3090 // store count
    //
    // SPECIAL CASES (This section is now blank)
    //
    // INPUT LIST
    //
    002 LDA 096 5096 // STO
    003 ADD 095 1095 // Determine first location
    004 STO 011 3011 // Overwrite STO instruction for list
    005 ADD 090 1090
    006 STO 092 3092 // Store STO + LOC + Count to determine end
    //
    // INPUT LIST LOOP
    007 LDA 011 5013 // Load manipulated instruction (using as counter)
    008 SUB 092 2092 //
    009 BRZ 016 7016 // If last count, go to END INPUT LIST
    010 IN 9001 //
    011 DAT 0 // manipulated instruction (store input in list)
    012 LDA 011 5011
    013 ADD 098 1098 // increment store instruction (to next list location)
    014 STO 011 3011 // Update STO instruction
    015 BR 007 6007 // GOTO INPUT LIST LOOP
    //
    // END INPUT LIST
    //
    // BUBBLESORT
    // Note: the ‘to’ is inclusive.
    //
    // for I = 0 to count – 1 do (may not be inclusive)
    // for j = count – 1 downto I + 1 do (may be inclusive)
    // if A[j] < A[j-1]
    // then exchange A[j] and A[j-1]
    // end do
    // end do
    //
    // If count < 2, then skip bubble sort
    016 LDA 098 5098
    017 SUB 090 2090 // 1 – count
    018 BRP 061 8061 //. GO TO END I LOOP
    //
    // Initialize ‘I’ Counter
    019 LDA 099 5099
    020 STO 092 3092 // set I to zero (0)
    //
    // START I LOOP
    //
    021 LDA 090 5090
    022 SUB 098 2098 // COUNT - 1
    023 SUB 092 1092 // COUNT -1 – I
    024 BRZ 061 7061 // if(I == count - 1) GOTO END I LOOP
    //
    // Initialize J
    025 LDA 090 5090
    026 SUB 098 2098
    027 STO 093 3093 // J = Count – 1
    //
    // START J LOOP
    //
    028 LDA 092 5092 // I
    029 SUB 093 2093 // I - J
    030 BRP 057 8057 // If I == j, then GO END J LOOP
    //
    // Compare A[j] and A[j-1]
    //
    // Load A[j] into variable
    031 LDA 097 5097 // load LDA instruction numeric code
    032 ADD 095 1095 // set to LDA 500
    033 ADD 093 1093 // set to LDA [500 + j] or A[j]
    034 STO 039 3039 // reset instruction
    035 SUB 098 2098 // set to LDA [500 + j – 1] or A[j-1]
    036 STO 037 3037 // reset instruction
    //
    // Load and compare A[j] and A[j-1]
    037 DAT 0 // load A[j-1] (instruction is manipulated)
    038 STO 088 3088
    039 DAT 0 // load A[j] (instruction is manipulated)
    040 STO 089 3089
    041 SUB 088 2088 // A[j] – A[j-1] (swap if not positive)
    042 BRP 053 8053 // GOTO DECREMENT J
    //
    // swap the variables
    //
    // set up the STO variables
    043 LDA 096 5096 // load STO instruction code
    044 ADD 095 1095 // set to STO 500
    045 ADD 093 1093 // set to STO [500 + j]
    046 STO 052 3052 // reset instruction
    047 SUB 098 2098 // set to STO [500 + j – 1]
    048 STO 050 3050 // reset instruction
    //
    // do the swap (no need for a variable since they are already stored)
    049 LDA 089 5089 // load A[j]
    050 DAT 0 // Store in A[j-1] (instruction is manipulated)
    051 LDA 088 5088 // load A[j-1]
    052 DAT 0 // Store in A[j] (instruction is manipulated)
    //
    // DECREMENT J
    //
    053 LDA 093 5093
    054 SUB 098 2098
    055 STO 093 3093 // J = J – 1
    056 BR 028 6028 // GOTO START J LOOP
    //
    // END J LOOP
    //
    // Increment I
    057 LDA 092 5092
    058 ADD 098 1098
    059 STO 092 3092 // I = I + 1
    060 BR 021 6021 // GOTO START I LOOP
    //
    // END I LOOP (End Bubblesort)
    //
    // OUTPUT COUNT
    //
    061 LDA 090 5090 // Count
    062 OUT 9002
    //
    // OUTPUT LIST (now sorted)
    // Initialize
    063 LDA 097 5097
    064 ADD 095 1095 // LDA + LOC
    065 STO 071 3071 // set up instruction
    066 ADD 090 1090 // LDA + LOC + Count
    067 STO 092 3092 // store unreachable instruction
    //
    // OUTPUT LIST LOOP
    068 LDA 071 5071 // load manipulated instruction (used as counter)
    069 SUB 092 2092
    070 BRZ 077 7077 // GOTO END OUTPUT LOOP
    071 DAT 0 // manipulated output
    072 OUT 9002
    073 LDA 071 5071
    074 ADD 098 1098
    075 STO 071 3071 // increment manipulated instruction
    076 BR 068 6028 // GOTO OUTPUT LIST LOOP
    //
    // END OUTPUT LOOP
    077 BR 0 6000 // Branch to top of loop (embedded)
    //
    // End of program
    078 HLT 0 // (Should never hit this instruction)
    //
    // Variables
    088 DAT 0 // A[j-1] value (also used for swapping)
    089 DAT 0 // A[j] value (also used for swapping)
    //
    090 DAT 0 // count variable (input and output)
    091 DAT 0 // unused
    092 DAT 0 // ‘I’ counter
    093 DAT 0 // ‘j’ counter
    //
    // Constants
    094 DAT 0 // unused
    095 DAT 500 // initial list location
    096 DAT 3000 // STO instruction
    097 DAT 5000 // LDA instruction
    098 DAT 1 // one (constant)
    099 DAT 0 // zero (constant)
    
    0 讨论(0)
  • 2021-01-27 13:55

    The idea is to reserve the very first input for the length of the rest of the input. This way you can know when all the values have been taken. So in your example:

    3 5 6 0
    

    The actual input values would have to be

    4 3 5 6 0
    

    ...where 4 tells us that 4 data values are following.

    So this means that the program would start with something like:

         INP
         BRZ quit ; nothing to do
         STA size
         ; .... other code ....
    quit HLT
    size DAT 
    

    Then the code would need to use this size to initialise a counter, and take the remaining inputs

            LDA size
            SUB one
    loop    STA counter
            INP ; take the next input
            ; .... process this value ....
            LDA counter ; decrement the counter
            SUB one
            BRP loop ; while no underflow: repeat
            ; ... other processing on the collected input ...
    quit    HLT
    counter DAT
    

    When you have several -- possibly nested -- loops, like is the case with bubble sort, you'll have to manage multiple counters.

    Applied to Bubble Sort

    In this answer you'll find an implementation of Bubble Sort where the input needs to be terminated by a 0. Here I provide you a variation of that solution where 0 no longer serves as an input terminator, but where the first input denotes the length of the array of values that follows in the input.

    Note that this makes the code somewhat longer, and as a consequence the space that remains for storing the input array becomes smaller: here only 25 mailboxes remain available for the array. On a standard LMC it would never be possible to store 500 inputs, as there are only 100 mailboxes in total, and code occupies some of these mailboxes.

    In the algorithm (after having loaded the input), the outer loop needs to iterate size-1 times, and the inner loop needs to iterate one time less each time the outer loop makes an iteration (this is the standard principle of Bubble Sort).

    #input: 10 4 3 2 1 0 9 8 5 6 7 
             LDA setfirst
             STA setcurr1
             INP
             BRZ zero ; nothing to do
             SUB one
             STA size ; actually one less
    input    STA counter1
             INP
    setcurr1 STA array
             LDA setcurr1
             ADD one
             STA setcurr1
             LDA counter1
             SUB one
             BRP input
             LDA size
             BRA dec
    sort     STA counter1
             LDA getfirst 
             STA getcurr1
             STA getcurr2
             LDA setfirst
             STA setcurr2
             LDA cmpfirst
             STA cmpcurr
             LDA counter1
    loop     STA counter2
             LDA getcurr1 
             ADD one
             STA getnext1
             STA getnext2
             LDA setcurr2
             ADD one
             STA setnext
    getnext1 LDA array
    cmpcurr  SUB array
             BRP inc
    getcurr1 LDA array
             STA temp
    getnext2 LDA array
    setcurr2 STA array
             LDA temp
    setnext  STA array
    inc      LDA getnext1 
             STA getcurr1
             LDA setnext
             STA setcurr2
             LDA cmpcurr
             ADD one
             STA cmpcurr
             LDA counter2
             SUB one
             BRP loop
             LDA counter1
    dec      SUB one
             BRP sort
             LDA size
    output   STA counter1
    getcurr2 LDA array
             OUT
             LDA getcurr2
             ADD one
             STA getcurr2
             LDA counter1
             SUB one
             BRP output
    zero     HLT
    one      DAT 1 
    getfirst LDA array
    setfirst STA array
    cmpfirst SUB array
    size     DAT
    counter1 DAT
    counter2 DAT
    temp     DAT
    array    DAT
    
    <script src="https://cdn.jsdelivr.net/gh/trincot/lmc@v0.77/lmc.js"></script>

    0 讨论(0)
提交回复
热议问题