Why does the code
void fcn(int *twoDArrayPtr, const int dim1, const int dim2) {
int (*array)[dim2] = reinterpret_cast(twoDArrayPtr);
}
You're trying to use C99's Variable Length Array(VLA) feature when you use dim2
as the array dimension in your cast. (gcc, for example does support this by extension: https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html.)
Good news, you can't do this now but you will be able to soon with the introduction of C++14's Runtime Sized Arrays.
Pertainant quotes:
Runtime-sized arrays offer the same syntax and performance of C99’s VLAs... Bear in mind that runtime-sized arrays aren’t precisely the same as C99’s VLAs. The C++14 feature is more restrained, which is just as well. Specifically, the following properties are excluded:
- Runtime-sized multidimensional arrays
- Modifications to the function declarator syntax
sizeof(a)
being a runtime-evaluated expression returning the size of atypedef int a[n];
evaluatingn
and passing it through thetypedef
So you're code will be legal soon, circa C++14.
I've tried it out on the Visual Studio 2015 Beta and sadly at time of writing it is not supported :(
Although clang does not support variable-length arrays, there is a workaround. The following compiles with clang++ 4.0.0:
void fcn(int *twoDArrayPtr, const int dim1, const int dim2) {
using array_type = int (*)[dim2];
array_type array = reinterpret_cast<array_type>(twoDArrayPtr);
}
int main() {
return 0;
}
I'm not sure why this alias declaration should make any difference. It certainly seems inconsistent.
dim2
is not a compile-time constant, and VLAs (variable-length arrays) don't exist in C++. Some other compilers (such as gcc) have language extensions to allow VLAs in C++, but clang's behavior is standard-conforming.
You can work around the problem with a class (or class template) that does the address translation for you, such as
// This is very rudimentary, but it's a point to start.
template<typename T>
class array2d_ref {
public:
array2d_ref(T *p, std::size_t dim) : data_(p), dim_(dim) { }
T *operator[](std::size_t i) { return &data_[i * dim_]; }
private:
T *data_;
std::size_t dim_;
};
...
array2d_ref<int> array(twoDArrayPtr, dim2);
But I'm afraid it is not possible (portably) to have a pointer-to-array unless you know the dimension of the array at compile time.