In my code I have this multiplications in a C++ code with all variable types as double[]
f1[0] = (f1_rot[0] * xu[0]) + (f1_rot[1] * yu[0]);
f1[1] = (f1_rot[0] *
Your problem is an obvious result of what is called catastrophic summations: As we know, a double precision float can handle numbers of around 16 significant decimals.
f1[1] = (f1_rot[0] * xu[1]) + (f1_rot[1] * yu[1])
= -3.0299486605499998e-07 + 3.0299497080000003e-07
= 1.0474500005332475e-13
This is what we obtain with the numbers you have given in your example.
Notice that (-7) - (-13) = 6
, which corresponds to the number of decimals in the float you give in your example: (ex: -5.39155e-07 -3.66312e-07, each mantissa is of a precision of 6 decimals). It means that you used here single precision floats.
I am sure that in your calculations, the precision of your numbers is bigger, that's why you find a more precise result.
Anyway, if you use single precision floats, you can't expect a better precision. With a double precision, you can find a precision up to 16. You shouldn't trust a difference between two numbers, unless it is bigger than the mantissa:
For further information, see these examples ... or the table in this article ...