(This is a question that we (the pyhf dev team) recently got and thought was good and worth sharing. So we\'re posting a modified version of it here.)
I am trying to do
Looking at the model, the background estimate shouldn't be zero, so add an epsilon of 1e-7
to it and then an 1%
background uncertainty. Though the issue here is that reasonable intervals for signal strength are between μ ∈ [0,10]
. If your model is such that you aren't sensitive to a signal strength in this range then you should test a new signal model which is the original signal scaled by some scale factor.
For visualization purposes let's extend the environment a bit
(example) $ cat requirements.txt
pyhf~=0.4.0
black
matplotlib~=3.1
altair~=4.0
# answer.py
import pyhf
from pyhf import Model, infer
import numpy as np
import matplotlib.pyplot as plt
import pyhf.contrib.viz.brazil
def invert_interval(test_mus, hypo_tests, test_size=0.05):
cls_obs = np.array([test[0] for test in hypo_tests]).flatten()
cls_exp = [
np.array([test[1][i] for test in hypo_tests]).flatten() for i in range(5)
]
crossing_test_stats = {"exp": [], "obs": None}
for cls_exp_sigma in cls_exp:
crossing_test_stats["exp"].append(
np.interp(
test_size, list(reversed(cls_exp_sigma)), list(reversed(test_mus))
)
)
crossing_test_stats["obs"] = np.interp(
test_size, list(reversed(cls_obs)), list(reversed(test_mus))
)
return crossing_test_stats
def main():
unscaled_signal=[0.00000000e+00,2.16147594e-04,4.26391320e-04,8.53157029e-04,
7.95947245e-04,1.85458682e-03,3.15515589e-03,4.22895664e-03,
4.65887617e-03,7.35380863e-03,8.71947686e-03,7.94697901e-03,
1.02721341e-02,9.24346489e-03,9.38926633e-03,9.68742497e-03,
8.11072856e-03,7.71003446e-03,6.80873211e-03,5.43234586e-03,
4.98376829e-03,4.72218222e-03,3.40645378e-03,3.44950579e-03,
2.61473009e-03,2.18345641e-03,2.00960464e-03,1.33786215e-03,
1.18440675e-03,8.36366201e-04,5.99855228e-04,4.27406780e-04,
2.71607026e-04,1.81370902e-04,1.03710513e-04,4.42737056e-05,
2.25835175e-05,1.04470885e-05,4.08162922e-06,3.20004812e-06,
3.37990384e-07,6.72843977e-07,0.00000000e+00,9.08675772e-08,
0.00000000e+00]
bkgrd=[1.47142981e+03,9.07095061e+02,9.11188195e+02,7.06123452e+02,
6.08054685e+02,5.23577562e+02,4.41672633e+02,4.00423307e+02,
3.59576067e+02,3.26368076e+02,2.88077216e+02,2.48887339e+02,
2.20355981e+02,1.91623853e+02,1.57733823e+02,1.32733279e+02,
1.12789438e+02,9.53141118e+01,8.15735557e+01,6.89604141e+01,
5.64245978e+01,4.49094779e+01,3.95547919e+01,3.13005748e+01,
2.55212288e+01,1.93057913e+01,1.48268648e+01,1.13639821e+01,
8.64408136e+00,5.81608649e+00,3.98839138e+00,2.61636610e+00,
1.55906281e+00,1.08550560e+00,5.57450828e-01,2.25258250e-01,
2.05230728e-01,1.28735312e-01,6.13798028e-02,2.00805073e-02,
5.91436617e-02,0.00000000e+00,0.00000000e+00,0.00000000e+00,
0.00000000e+00]
scale_factor = 500
signal = np.asarray(unscaled_signal) * scale_factor
epsilon = 1e-7
background = np.asarray(bkgrd) + epsilon
spec = {
"channels": [
{
"name": "singlechannel",
"samples": [
{
"name": "signal",
"data": signal.tolist(),
"modifiers": [
{"name": "mu", "type": "normfactor", "data": None}
],
},
{
"name": "background",
"data": background.tolist(),
"modifiers": [
{
"name": "uncert",
"type": "shapesys",
"data": (0.01 * background).tolist(),
},
],
},
],
}
]
}
model = pyhf.Model(spec)
init_pars = model.config.suggested_init()
par_bounds = model.config.suggested_bounds()
data = model.expected_data(init_pars)
cls_obs, cls_exp = pyhf.infer.hypotest(
1.0,
data,
model,
init_pars,
par_bounds,
return_expected_set=True,
return_test_statistics=True,
qtilde=True,
)
# Show that the scale factor chosen gives reasonable values
print(f"Observed CLs for µ=1: {cls_obs[0]:.2f}")
print("-----")
for idx, n_sigma in enumerate(np.arange(-2, 3)):
print(
"Expected {}CLs for µ=1: {:.3f}".format(
" " if n_sigma == 0 else "({} σ) ".format(n_sigma),
cls_exp[idx][0],
)
)
# Perform hypothesis test scan
_start = 0.1
_stop = 4
_step = 0.1
poi_tests = np.arange(_start, _stop + _step, _step)
print("\nPerforming hypothesis tests\n")
hypo_tests = [
pyhf.infer.hypotest(
mu_test,
data,
model,
init_pars,
par_bounds,
return_expected_set=True,
return_test_statistics=True,
qtilde=True,
)
for mu_test in poi_tests
]
# This is all you need. Below is just to demonstrate.
# Upper limits on signal strength
results = invert_interval(poi_tests, hypo_tests)
print(f"Observed Limit on µ: {results['obs']:.2f}")
print("-----")
for idx, n_sigma in enumerate(np.arange(-2, 3)):
print(
"Expected {}Limit on µ: {:.3f}".format(
" " if n_sigma == 0 else "({} σ) ".format(n_sigma),
results["exp"][idx],
)
)
# Visualize the "Brazil band"
fig, ax = plt.subplots()
fig.set_size_inches(7, 5)
ax.set_title("Hypothesis Tests")
ax.set_ylabel("CLs")
ax.set_xlabel(f"µ (for Signal x {scale_factor})")
pyhf.contrib.viz.brazil.plot_results(ax, poi_tests, hypo_tests)
fig.savefig("brazil_band.pdf")
if __name__ == "__main__":
main()
The value that the signal needs to be scaled by can be determined by just trying a few scale factor values until the CLs values for a signal strength of mu=1
begin to look reasonable (something larger than 1e-3
or so). In this particular example, a scale factor of 500
seems okay.
The upper limit on the unscaled signal strength is then just the observed limit divided by the scale factor, which in this case there is obviously no sensitivity.
(example) $ python answer.py
Observed CLs for µ=1: 0.54
-----
Expected (-2 σ) CLs for µ=1: 0.014
Expected (-1 σ) CLs for µ=1: 0.049
Expected CLs for µ=1: 0.157
Expected (1 σ) CLs for µ=1: 0.403
Expected (2 σ) CLs for µ=1: 0.737
Performing hypothesis tests
Observed Limit on µ: 2.22
-----
Expected (-2 σ) Limit on µ: 0.746
Expected (-1 σ) Limit on µ: 0.998
Expected Limit on µ: 1.392
Expected (1 σ) Limit on µ: 1.953
Expected (2 σ) Limit on µ: 2.638