2d probability distribution with rbf and scipy

后端 未结 1 1896
梦如初夏
梦如初夏 2021-01-26 23:54

I have something similar to this problem respectivly the answer of this problem: RBF interpolation: LinAlgError: singular matrix

But I want to do the probability distr

相关标签:
1条回答
  • 2021-01-27 00:05

    This is, first, a 1D example to emphasis the difference between the Radial Basis Function interpolation and the Kernel Density Estimation of a probability distribution:

    import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline
    
    from scipy.interpolate.rbf import Rbf  # radial basis functions
    from scipy.stats import gaussian_kde
    
    coords = np.linspace(0, 2, 7)
    values = np.ones_like(coords)
    
    x_fine = np.linspace(-1, 3, 101)
    
    rbf_interpolation = Rbf(coords, values, function='gaussian')
    interpolated_y = rbf_interpolation(x_fine)
    
    kernel_density_estimation = gaussian_kde(coords)
    
    plt.figure()
    plt.plot(coords, values, 'ko', markersize=12)
    plt.plot(x_fine, interpolated_y, '-r', label='RBF Gaussian interpolation')
    plt.plot(x_fine, kernel_density_estimation(x_fine), '-b', label='kernel density estimation')
    plt.legend(); plt.xlabel('x')
    plt.show()
    

    And this is the 2D interpolation using Gaussian RBF for the provided data, and by setting arbitrarily the values to z=1:

    from scipy.interpolate.rbf import Rbf  # radial basis functions
    import matplotlib.pyplot as plt
    import numpy as np
    
    x = [1, 1, 2 ,3, 4, 4, 2, 6, 7]
    y = [0, 2, 5, 6, 2, 4, 1, 5, 2]
    z = [1]*len(x)
    
    rbf_adj = Rbf(x, y, z, function='gaussian')
    
    x_fine = np.linspace(0, 8, 81)
    y_fine = np.linspace(0, 8, 82)
    
    x_grid, y_grid = np.meshgrid(x_fine, y_fine)
    
    z_grid = rbf_adj(x_grid.ravel(), y_grid.ravel()).reshape(x_grid.shape)
    
    plt.pcolor(x_fine, y_fine, z_grid);
    plt.plot(x, y, 'ok');
    plt.xlabel('x'); plt.ylabel('y'); plt.colorbar();
    plt.title('RBF Gaussian interpolation');
    

    0 讨论(0)
提交回复
热议问题