mutate two or more columns if case_when is used

前端 未结 2 1879
刺人心
刺人心 2021-01-26 21:15

I am trying to use the case_when function for a bunch of columns y a data.frame.

This case does not return the specified columns in mutate

相关标签:
2条回答
  • 2021-01-26 21:53

    Discover this solution, but is a bit weird and tricky

    mutate_when <- function (data, ...) {
      dots <- eval (substitute (alist(...)))
      for (i in seq (1, length (dots), by = 3)) {
        condition <- eval (dots [[i]], envir = data)
        mutations <- eval (dots [[i + 1]], envir = data [condition, ])
        data[condition, names(mutations)] <- mutations
        mutations_else <- eval (dots [[i + 2]], envir = data [!condition, ])
        data[!condition, names(mutations)] <- mutations_else
      }
      data
    }
    
    cars %>%
      mutate(
        km = speed * dist, 
        mt = km/1000
      ) %>%
      mutate_when(
        speed < 20, 
        list (
          km = km * 2,
          mt = mt * 3
        ),
        list (
          0
        )
      )
    

    Gives

       speed dist   km    mt
    1      4    2   16 0.024
    2      4   10   80 0.120
    3      7    4   56 0.084
    4      7   22  308 0.462
    5      8   16  256 0.384
    6      9   10  180 0.270
    
    0 讨论(0)
  • 2021-01-26 22:06

    We could use mutate_at

    library(tidyverse)
    cars %>%
       mutate(km = speed * dist, mt = km/1000) %>%
       mutate_at(vars(km, mt), funs(case_when(speed < 20 ~ .*2,
                                          TRUE ~ .)))
    

    If we need to do computation with separate values for each of the column, then use map2 or pmap

    out <- cars %>%
             mutate(km = speed * dist, mt = km/1000)  %>%  
             select(km, mt) %>%
             map2_df(., list(2, 3), ~ 
               case_when(cars$speed < 20 ~ .x * .y, TRUE ~ .x)) %>% 
             bind_cols(cars, .)
    
    head(out)
    #  speed dist  km    mt
    #1     4    2  16 0.024
    #2     4   10  80 0.120
    #3     7    4  56 0.084
    #4     7   22 308 0.462
    #5     8   16 256 0.384
    #6     9   10 180 0.270
    
    0 讨论(0)
提交回复
热议问题