I have to plot 10 frequency distributions on one graph. In order to keep things tidy, I would like to avoid making a histogram with bins and would prefer having lines that follo
You're using the default number of bins for your histogram and, I will assume, for your kernel density estimation calculations.
Depending on how many data points you have, that will certainly not be optimal, as you've discovered. The first thing to try is to calculate the optimum bin width to give the smoothest curve while simultaneously preserving the underlying PDF as best as possible. (see also here, here, and here);
If you still don't like how smooth the resulting plot is, you could try using the bins
output from hist
as a further input to ksdensity
. Perhaps something like this:
[kcounts,kbins] = ksdensity(data,bins,'npoints',length(bins));
I don't have your data, so you may have to play with the parameters a bit to get exactly what you want.
Alternatively, you could try fitting a spline
through the points that you get from hist
and plotting that instead.
Some code:
data = randn(1,1e4);
optN = sshist(data);
figure(1)
[N,Center] = hist(data);
[Nopt,CenterOpt] = hist(data,optN);
[f,xi] = ksdensity(data,CenterOpt);
dN = mode(diff(Center));
dNopt = mode(diff(CenterOpt));
plot(Center,N/dN,'.-',CenterOpt,Nopt/dNopt,'.-',xi,f*length(data),'.-')
legend('Default','Optimum','ksdensity')
The result:
Note that the "optimum" bin width preserves some of the fine structure of the distribution (I had to run this a couple times to get the spikes) while the ksdensity
gives a smooth curve. Depending on what you're looking for in your data, that may be either good or bad.
How about interpolating with splines?
nbins = 10; %// number of bins for original histogram
n_interp = 500; %// number of values for interpolation
[counts, bins] = hist(data, nbins);
bins_interp = linspace(bins(1), bins(end), n_interp);
counts_interp = interp1(bins, counts, bins_interp, 'spline');
plot(bins, counts) %// original histogram
figure
plot(bins_interp, counts_interp) %// interpolated histogram
Example: let
data = randn(1,1e4);
Original histogram:
Interpolated:
Following your code, the y axis in the above figures gives the count, not the probability density. To get probability density you need to normalize:
normalization = 1/(bins(2)-bins(1))/sum(counts);
plot(bins, counts*normalization) %// original histogram
plot(bins_interp, counts_interp*normalization) %// interpolated histogram
Check: total area should be approximately 1:
>> trapz(bins_interp, counts_interp*normalization)
ans =
1.0009