How does multinom() treat NA values by default?

前端 未结 2 2012
迷失自我
迷失自我 2021-01-26 14:35

When I am running multinom(), say Y ~ X1 + X2 + X3, if for one particular row X1 is NA (i.e. missing), but Y,

相关标签:
2条回答
  • 2021-01-26 15:15

    Here is a simple example (from ?multinom from the nnet package) to explore the different na.action:

    > library(nnet)
    > library(MASS)
    > example(birthwt)
    > (bwt.mu <- multinom(low ~ ., bwt))
    

    Intentionally create a NA value:

    > bwt[1,"age"]<-NA # Intentionally create NA value
    > nrow(bwt)
    [1] 189
    

    Test the 4 different na.action:

    > predict(multinom(low ~ ., bwt, na.action=na.exclude)) # Note length is 189
    # weights:  12 (11 variable)
    initial  value 130.311670
    iter  10 value 97.622035
    final  value 97.359978
    converged
      [1] <NA> 0    0    0    0    0    0    0    0    0    0    0    1    1    0
     [16] 0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
     ....
    
    > predict(multinom(low ~ ., bwt, na.action=na.omit)) # Note length is 188
    # weights:  12 (11 variable)
    initial  value 130.311670
    iter  10 value 97.622035
    final  value 97.359978
    converged
      [1] 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
     [38] 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0
     .....
    
    > predict(multinom(low ~ ., bwt, na.action=na.fail))    # Generates error
    Error in na.fail.default(list(low = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,  :
      missing values in object
    
    > predict(multinom(low ~ ., bwt, na.action=na.pass))    # Generates error
    Error in qr.default(X) : NA/NaN/Inf in foreign function call (arg 1)
    

    So na.exclude generates a NA in the prediction while na.omit omits it entirely. na.pass and na.fail will not create the model. If na.action is not specified, this shows the default:

    > getOption("na.action")
    [1] "na.omit"
    
    0 讨论(0)
  • 2021-01-26 15:35

    You can specify the behaviour

    - na.omit and na.exclude: returns the object with observations removed if they contain any missing values; differences between omitting and excluding NAs can be seen in some prediction and residual functions
    - na.pass: returns the object unchanged
    - na.fail: returns the object only if it contains no missing values
    

    http://www.ats.ucla.edu/stat/r/faq/missing.htm

    0 讨论(0)
提交回复
热议问题