What is the syntax for multidimensional array in Swift?

后端 未结 2 1936
慢半拍i
慢半拍i 2021-01-26 13:42

CO fans: before you jump into conclusion it is a duplicate, there are 2 distinct flavours of arrays, and it seems I am asking about less popular one.

So far, I

相关标签:
2条回答
  • 2021-01-26 14:17

    Yes, there is nothing built-in (as far as I know). You can define a custom class/struct (as in Most efficient way to access multi-dimensional arrays in Swift? or How to Declare a Multidimensional Boolean array in Swift?) with a subscript operator, so that a[0,0] = 1 works.

    Here is a mixture of those solutions, but as a generic struct instead of class. I have also changed the order of the rows and columns parameters because I find that more natural:

    struct Array2D<T : IntegerLiteralConvertible > {
        let rows : Int
        let cols : Int
        var matrix: [T]
    
        init(rows : Int, cols : Int) {
            self.rows = rows
            self.cols = cols
            matrix = Array(count : rows * cols, repeatedValue : 0)
        }
    
        subscript(row : Int, col : Int) -> T {
            get { return matrix[cols * row + col] }
            set { matrix[cols*row+col] = newValue }
        }
    }
    

    I don't see how to create such a thing from a literal like [2, 3 ;; -1, 0]. But you could initialize it from a nested array:

    extension Array2D {
    
        init(_ elements: [[T]]) {
            let rows = elements.count
            let cols = elements[0].count
            self.init(rows: rows, cols: cols)
            for i in 0 ..< rows {
                assert(elements[i].count == cols, "Array must have same number of elements for each row")
                self.matrix.replaceRange(cols * i ..< cols * (i+1), with: elements[i])
            }
        }
    }
    

    Example:

    let array = Array2D([[1, 2, 3], [4, 5, 6]])
    println(array.rows)  // 2
    println(array.cols)  // 3
    println(array[1, 2]) // 6
    println(array[1, 0]) // 4
    

    You can additionally implement the ArrayLiteralConvertible protocol to initialize a 2d array from a nested array literal:

    extension Array2D : ArrayLiteralConvertible {
    
        init(arrayLiteral elements: [T]...) {
            self.init(elements)
        }
    }
    

    Example:

    let array : Array2D = [[1, 2, 3], [4, 5, 6]]
    

    For square arrays (rows == columns) you could alternatively initialize it from a plain array:

    extension Array2D {
    
        init(_ elements: [T]) {
            let rows = Int(sqrt(Double(elements.count)))
            assert(rows * rows == elements.count, "Number of array elements must be a square")
            self.init(rows: rows, cols: rows)
            self.matrix = elements
        }
    }
    

    Example:

    let squareArray = Array2D([2, 3, -1, 0])
    println(squareArray.rows)  // 2
    println(squareArray.cols)  // 3
    println(squareArray[1, 0]) // -1
    
    0 讨论(0)
  • 2021-01-26 14:20

    An example implementation supporting arbitrary number of dimensions:

    struct ArrayMultiDimension<T> {
        private var _base:[T]
        let _dimensions: [Int]
    
        init(initialValue: T, dimensions:Int...) {
            _base = Array(count: reduce(dimensions, 1, *), repeatedValue: initialValue)
            _dimensions =  dimensions
        }
        private func _position2idx(position:[Int]) -> Int {
            assert(position.count == _dimensions.count)
            return reduce(Zip2(_dimensions, position), 0) {
                assert($1.0 > $1.1)
                return $0 * $1.0 + $1.1
            }
        }
        subscript(position:Int...) -> T {
            get { return _base[_position2idx(position)] }
            set { _base[_position2idx(position)] = newValue }
        }
    }
    
    // Usage:
    
    var array3d = ArrayMultiDimension(initialValue: "", dimensions: 4,3,2)
    
    for x in 0 ..< 4 {
        for y in 0 ..< 3 {
            for z in 0 ..< 2 {
                array3d[x,y,z] = "\(x)-\(y)-\(z)"
            }
        }
    }
    
    array3d[1,2,0] = "foo"
    

    But, this could be very slow...

    0 讨论(0)
提交回复
热议问题