I want to convert an org.apache.spark.sql.DataFrame
to org.apache.spark.rdd.RDD[(String, String)]
in Databricks. Can anyone help?
You can use df.map(row => ...) to convert the dataframe to a RDD if you want to map a row to a different RDD element.
For example:
val df = Seq(("table1",432),
("table2",567),
("table3",987),
("table1",789)).
toDF("tablename", "Code").toDF()
df.show()
+---------+----+
|tablename|Code|
+---------+----+
| table1| 432|
| table2| 567|
| table3| 987|
| table1| 789|
+---------+----+
val rddDf = df.map(r => (r(0), r(1))).rdd // Type:RDD[(Any,Any)]
OR
val rdd = df.map(r => (r(0).toString, r(1).toString)).rdd //Type: RDD[(String,String)]
Please refer https://community.hortonworks.com/questions/106500/error-in-spark-streaming-kafka-integration-structu.html regarding AnalysisException: Queries with streaming sources must be executed with writeStream.start()
You need to wait for the termination of the query using query.awaitTermination() To prevent the process from exiting while the query is active.