I\'ve been given a matrix:
P <- matrix(c(0, 0, 0, 0.5, 0, 0.5, 0.1, 0.1, 0, 0.4, 0, 0.4, 0, 0.2, 0.2, 0.3, 0, 0.3, 0, 0, 0.3, 0.5, 0, 0.2, 0, 0, 0, 0.4, 0.6,
Actually, a much better way is to do this:
## transition probability matrix
P <- matrix(c(0, 0, 0, 0.5, 0, 0.5, 0.1, 0.1, 0, 0.4, 0, 0.4, 0, 0.2, 0.2, 0.3, 0, 0.3, 0, 0, 0.3, 0.5, 0, 0.2, 0, 0, 0, 0.4, 0.6, 0, 0, 0, 0, 0, 0.4, 0.6), nrow = 6, ncol = 6, byrow = TRUE)
## a function to find stationary distribution
stydis <- function(P, tol = 1e-16) {
n <- 1; e <- 1
P0 <- P ## transition matrix P0
while(e > tol) {
P <- P %*% P0 ## resulting matrix P
e <- max(abs(sweep(P, 2, colMeans(P))))
n <- n + 1
}
cat(paste("convergence after",n,"steps\n"))
P[1, ]
}
Then when you call the function:
stydis(P)
# convergence after 71 steps
# [1] 0.002590674 0.025906736 0.116580311 0.310880829 0.272020725 0.272020725
The function stydis
, essentially continuously does:
P <- P %*% P0
until convergence of P
is reached. Convergence is numerically determined by the L1 norm of discrepancy matrix:
sweep(P, 2, colMeans(P))
The L1 norm is the maximum, absolute value of all matrix elements. When the L1 norm drops below 1e-16
, convergence occurs.
As you can see, convergence takes 71 steps. Now, we can obtain faster "convergence" by controlling tol
(tolerance):
stydis(P, tol = 1e-4)
# convergence after 17 steps
# [1] 0.002589361 0.025898057 0.116564506 0.310881819 0.272068444 0.271997814
But if you check:
mpow(P, 17)
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 0.002589361 0.02589806 0.1165645 0.3108818 0.2720684 0.2719978
# [2,] 0.002589415 0.02589722 0.1165599 0.3108747 0.2720749 0.2720039
# [3,] 0.002589738 0.02589714 0.1165539 0.3108615 0.2720788 0.2720189
# [4,] 0.002590797 0.02590083 0.1165520 0.3108412 0.2720638 0.2720515
# [5,] 0.002592925 0.02592074 0.1166035 0.3108739 0.2719451 0.2720638
# [6,] 0.002588814 0.02590459 0.1166029 0.3109419 0.2720166 0.2719451
Only the first 4 digits are the same, as you put tol = 1e-4
.
A floating point number has a maximum of 16 digits, so I would suggest you use tol = 1e-16
for reliable convergence test.