>>> df
Time
5/10/2017 (135) 01:05:03
5/11/2017 (136) 04:05:06
Given an input date such as this in a DataFrame,
You can use replace by regex:
First need escape ()
by \
because special chars in regex, then match all ints by \d+
and last match zero or more whitespaces after )
by \s*
.
df['Time'] = df['Time'].str.replace("\(\d+\)\s*", '')
print (df)
Time
0 5/10/2017 01:05:03
1 5/11/2017 04:05:06
And if need convert to datetime:
df['Time'] = pd.to_datetime(df['Time'].str.replace("\(\d+\)\s*", ''))
print (df)
Time
0 2017-05-10 01:05:03
1 2017-05-11 04:05:06
EDIT:
In your sample are mising escaping chars \
and is possible use instead \d+
[0-9]+
:
df['Time'].replace('\([0-9]+\)\s*','', regex=True, inplace=True)
print (df)
Time
0 5/10/2017 01:05:03
1 5/11/2017 04:05:06