Scoring metrics from Keras scikit-learn wrapper in cross validation with one-hot encoded labels

后端 未结 3 982
刺人心
刺人心 2021-01-26 07:45

I am implementing a neural network and I would like to assess its performance with cross validation. Here is my current code:

def recall_m(y_true, y_pred):
    t         


        
相关标签:
3条回答
  • 2021-01-26 08:09

    cross_val_score is not the appropritate tool here; you should take manual control of your CV procedure. Here is how, combining aspects from my answer in the SO thread you have linked, as well as from Cross-validation metrics in scikit-learn for each data split, and using accuracy just as an example metric:

    from sklearn.model_selection import KFold
    from sklearn.metrics import accuracy_score
    import numpy as np
    
    n_splits = 10
    kf = KFold(n_splits=n_splits, shuffle=True)
    cv_acc = []
    
    # prepare a single-digit copy of your 1-hot encoded true labels:
    y_single = np.argmax(y, axis=1)
    
    for train_index, val_index in kf.split(x):
        # fit & predict
        model = KerasClassifier(build_fn=build_model, batch_size=10, epochs=ep)
        model.fit(x[train_index], y[train_index])
        pred = model.predict_classes(x[val_index]) # predicts single-digit classes
    
        # get fold accuracy & append
        fold_acc = accuracy_score(y_single[val_index], pred)
        cv_acc.append(fold_acc)
    
    acc = mean(cv_acc)
    

    At completion of the loop, you will have the accuracies of each fold in the list cv_acc, and taking the mean will give you the average value.

    This way, you don't need the custom definitions you use for precision, recall, and f1; you can just use the respective ones from scikit-learn. You can add as many different metrics you want in the loop (something you cannot do with cross_cal_score), as long as you import them appropriately from scikit-learn as done here with accuracy_score.

    0 讨论(0)
  • 2021-01-26 08:20

    For anybody still wanting to use cross_validate with one-hot encoded labels. This is a more scikit oriented way to go about it.

    X, y = get_data()
    # in my application I have words as labels, so y is a np.array with strings
    encoder = LabelEncoder()
    y_encoded = encoder.fit_transform(y)
    
    # build a version of the scoring metrics for multi-class and one-hot encoding predictions
    labels = sorted(set(np.unique(y_encoded)) - set(encoder.transform(['nan'])))
    
    # these functions compare y (one-hot encoded) to y_pred (integer encoded)
    # by making y integer encoded as well
    
    def f1_categorical(y, y_pred, **kwargs):
        return f1_score(y.argmax(1), y_pred, **kwargs)
    
    def precision_categorical(y, y_pred, **kwargs):
        return precision_score(y.argmax(1), y_pred, **kwargs)
    
    def recall_categorical(y, y_pred, **kwargs):
        return recall_score(y.argmax(1), y_pred, **kwargs)
    
    def accuracy_categorical(y, y_pred, **kwargs):
        return accuracy_score(y.argmax(1), y_pred, **kwargs)
    
    # Wrap the functions abobe with `make_scorer` 
    # (here I chose the micro average because it worked for my multi-class application)
    our_f1 = make_scorer(f1_categorical, labels=labels, average="micro")
    our_precision = make_scorer(precision_categorical, labels=labels, average="micro")
    our_recall = make_scorer(recall_categorical, labels=labels, average="micro")
    aur_accuracy = make_scorer(accuracy_categorical)
    scoring = {
        'accuracy':aur_accuracy,
        'f1':our_f1,
        'precision':our_precision,
        'recall':our_recall
    }
    
    # one-hot encoding
    y_categorical = tf.keras.utils.to_categorical(y_encoded)
    
    # keras wrapper
    estimator = tf.keras.wrappers.scikit_learn.KerasClassifier(
                    build_fn=model_with_one_hot_encoded_output,
                    epochs=1,
                    batch_size=32,
                    verbose=1)
    
    # cross validate as usual
    results = cross_validate(estimator, 
                             X_scaled, y_categorical, 
                             scoring=scoring)
    
    0 讨论(0)
  • 2021-01-26 08:31

    I've been experimenting with @desertnaut 's answer however because I have a multi class problem, I experienced problems not even with the loop itself but the np.argmax() line. After googling I did not find any way to resolve it easily so I ended up (on this user's advice) implementing CV by hand. It was a bit more complicated because I am using a pandas dataframe (and the code can definitely be cleaned up further) but here is the working code:

    ep = 120
    df_split = np.array_split(df, 10)
    test_part = 0
    acc = []
    f1 = []
    prec = []
    recalls = []
    while test_part < 10:
        model = build_model()
        train_x = []
        train_y = []
        test_x = []
        test_y = []
        print("CV Fold, with test partition i = " , test_part)
    
        for i in range(10):
            #on first iter that isnt a test part then set the train set to this 
            if len(train_x) == 0 and not i == test_part:
                train_x = df_split[i][['start-sin', 'start-cos', 'start-sin-lag', 'start-cos-lag', 'prev-close-sin', 'prev-close-cos', 'prev-length', 'state-lag', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']]
                train_y = df_split[i][['wait-categ-none', 'wait-categ-short', 'wait-categ-medium', 'wait-categ-long']]
                #terminate immediately
                continue
            #if current is not a test partition then concat with previous version
            if not i == test_part:
                train_x = pd.concat([train_x, df_split[i][['start-sin', 'start-cos', 'start-sin-lag', 'start-cos-lag', 'prev-close-sin', 'prev-close-cos', 'prev-length', 'state-lag', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']]], axis=0)
                train_y = pd.concat([train_y, df_split[i][['wait-categ-none', 'wait-categ-short', 'wait-categ-medium', 'wait-categ-long']]], axis=0)
    
            #set this to test partition
            else:
                test_x = df_split[i][['start-sin', 'start-cos', 'start-sin-lag', 'start-cos-lag', 'prev-close-sin', 'prev-close-cos', 'prev-length', 'state-lag', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']]
                test_y = df_split[i][['wait-categ-none', 'wait-categ-short', 'wait-categ-medium', 'wait-categ-long']]
        #enforce
        train_y = train_y.replace(False, 0)
        train_y = train_y.replace(True, 1)
        test_y = test_y.replace(False, 0)
        test_y = test_y.replace(True, 1)
        #fit
        model.fit(train_x, train_y, epochs=ep, verbose=1)
        pred = model.predict(test_x)
        #score
        loss, accuracy, f1_score, precision, recall = model.evaluate(test_x, test_y, verbose=0)
        #save
        acc.append(accuracy)
        f1.append(f1_score)
        prec.append(precision)
        recalls.append(recall)
        test_part += 1
    print("CV finished.\n")
    
    print("Mean Accuracy")
    print(sum(acc)/len(acc))
    print("Mean F1 score")
    print(sum(f1)/len(f1))
    print("Mean Precision")
    print(sum(prec)/len(prec))
    print("Mean Recall rate")
    print(sum(recalls)/len(recalls))
    
    0 讨论(0)
提交回复
热议问题