I have trained a keras CNN monitoring the metrics as follow:
METRICS = [
TruePositives(name=\'tp\'),
FalsePositives(name=\'fp\'),
TrueNegatives(name=\'tn\'
custom_objects['METRICS'] = METRICS
model = load_model('model.h5', custom_objects=custom_objects)
It looks like you are playing with a tensorflow tutorial. I also used these exact metrics and had the same problem. What worked for me was to load the model with compile = False
and then compile it with the custom metrics. Then you should be able to use model.predict(....)
as expected.
import keras
model = keras.models.load_model('model.h5', compile = False)
METRICS = [
keras.metrics.TruePositives(name='tp'),
keras.metrics.FalsePositives(name='fp'),
keras.metrics.TrueNegatives(name='tn'),
keras.metrics.FalseNegatives(name='fn'),
keras.metrics.BinaryAccuracy(name='accuracy'),
keras.metrics.Precision(name='precision'),
keras.metrics.Recall(name='recall'),
keras.metrics.AUC(name='auc'),
]
model.compile(optimizer = keras.optimizers.Adam(learning_rate=1e-4),
loss = 'binary_crossentropy',
metrics = METRICS
)
When you have custom metrics you need to follow slightly different approach.
custom_objects
and compile = False
I am showing the approach here
import tensorflow as tf
from tensorflow import keras
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Custom Loss1 (for example)
#@tf.function()
def customLoss1(yTrue,yPred):
return tf.reduce_mean(yTrue-yPred)
# Custom Loss2 (for example)
#@tf.function()
def customLoss2(yTrue, yPred):
return tf.reduce_mean(tf.square(tf.subtract(yTrue,yPred)))
def create_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy', customLoss1, customLoss2])
return model
# Create a basic model instance
model=create_model()
# Fit and evaluate model
model.fit(x_train, y_train, epochs=5)
loss, acc,loss1, loss2 = model.evaluate(x_test, y_test,verbose=1)
print("Original model, accuracy: {:5.2f}%".format(100*acc)) # Original model, accuracy: 98.11%
# saving the model
model.save('./Mymodel',save_format='tf')
# load the model
loaded_model = tf.keras.models.load_model('./Mymodel',custom_objects={'customLoss1':customLoss1,'customLoss2':customLoss2},compile=False)
# compile the model
loaded_model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy', customLoss1, customLoss2])
# loaded model also has same accuracy, metrics and loss
loss, acc,loss1, loss2 = loaded_model.evaluate(x_test, y_test,verbose=1)
print("Loaded model, accuracy: {:5.2f}%".format(100*acc)) #Loaded model, accuracy: 98.11%