I have a problem required to solve a set of nonlinear polynomial constraints. Can z3 always give a result (sat or unsat) when handling nonlinear real arithmetic. Is the result
Yes, it is complete assuming (1) availability of resources, and (2) you only use real constraints so that the nlsat
tactic is used, as the last I checked, it wasn't full integrated with the other solvers, see the below questions/answers for more details. Here's a simple example illustrating this (at least by default, rise4fun link: http://rise4fun.com/Z3/SRZ8 ):
(declare-fun x () Real)
(declare-fun y () Real)
(declare-fun z () Real)
(assert (>= (* 2 (^ x 2)) (* y z)))
(assert (> x 100))
(assert (< y 0))
(assert (< z 0))
(assert (> (^ y 2) 1234))
(assert (< (^ z 3) -25))
(check-sat) ; sat
(get-model)
(declare-fun b () Int)
(assert (> b x))
(check-sat) ; unknown
Z3 Theorem Prover: Pythagorean Theorem (Non-Linear Artithmetic)
mixing reals and bit-vectors
z3 produces unknown for assertions without quantifiers
z3 existential theory of the reals
Combining nonlinear Real with linear Int
Z3 support for nonlinear arithmetic
Encoding returns "unknown"
For the incremental question, it may be possible to use nlsat with incremental solving, but in this simple example applying a standard method (rise4fun link: http://rise4fun.com/Z3/Ce1F and see: Soft/Hard constraints in Z3 ) there is an unknown, although a model assignment is made, so it may be useful for your purposes. If not, you can try push/pop: Incremental solving in Z3 using push command
(set-option :produce-unsat-cores true)
(set-option :produce-models true)
(declare-const p1 Bool)
(declare-const p2 Bool)
(declare-const p3 Bool)
(declare-const p4 Bool)
(declare-const p5 Bool)
(declare-const p6 Bool)
(declare-const p7 Bool)
(declare-fun x () Real)
(declare-fun y () Real)
(declare-fun z () Real)
(assert (=> p1 (>= (* 2 (^ x 2)) (* y z))))
(assert (=> p2 (> x 100)))
(assert (=> p3 (< y 0)))
(assert (=> p4 (< z 0)))
(assert (=> p5 (> (^ y 2) 1234)))
(assert (=> p6 (< (^ z 3) -25)))
(assert (=> p7 (< x 50)))
(check-sat p1 p2 p3 p4 p5 p6 p7) ; unsat
(get-unsat-core) ; (p2 p7)
(check-sat p1 p2 p3 p4 p5 p6) ; unknown, removed one of the unsat core clauses
(get-model)
(declare-fun b () Int)
(assert (> b x))
(check-sat) ; unknown