I am not sure how to solve this problem:
We import order information from a variety of online vendors ( Amazon, Newegg etc ). Each vendor has their own specific termino
Sounds like you need to create an abstract class that will define the basics of interacting with the data, then derive a class per database schema you need to access. This will allow the core code to operate on a single object type, and each implementation can then specify the queries in a form specific to that database schema.
Something like:
public class Order
{
private String orderNumber;
private BigDecimal orderTotal;
... etc ...
}
public abstract class AbstractOrderInformation
{
public abstract ArrayList<Order> getOrders();
...
}
with a Newegg class:
public class NeweggOrderInformation extends AbstractOrderInformation
{
public ArrayList<Order> getOrders() {
... do the work of getting the newegg order
}
...
}
Then you can have an arbitrarily large number of formats and when you need information, you can just iterate over all the implementations and get the Orders from each.
First, you can create a VIEW to provide this functionality:
CREATE VIEW orders AS
SELECT '1'::int AS source -- or any other tag to identify source
,"OrderNumber"::text AS order_nr
,"InvoiceNumber" AS tansaction_id -- no cast .. is int already
,"OrderDate" AT TIME ZONE 'UTC' AS purchase_date -- !! see explanation
FROM tbl_newegg
UNION ALL -- not UNION!
SELECT 2
"amazonOrderId"
,"merchant-order-id"
,"purchase-date"
FROM tbl_amazon;
You can query this view like any other table:
SELECT * FROM orders WHERE order_nr = 123 AND source = 2;
The source
is necessary if the order_nr
is not unique. How else would you guarantee unique order-numbers over different sources?
A timestamp without time zone
is an ambiguous in a global context. It's only good in connection with its time zone. If you mix timestamp
and timestamptz
, you need to place the timestamp
at a certain time zone with the AT TIME ZONE
construct to make this work. For more explanation read this related answer.
I use UTC as time zone, you might want to provide a different one. A simple cast "OrderDate"::timestamptz
would assume your current time zone. AT TIME ZONE
applied to a timestamp
results in timestamptz
. That's why I did not add another cast.
While you can, I advise not to use camel-case identifiers in PostgreSQL ever. Avoids many kinds of possible confusion. Note the lower case identifiers (without the now unnecessary double-quotes) I supplied.
Don't use varchar(25)
as type for the order_nr
. Just use text
without arbitrary length modifier if it has to be a string. If all order numbers consist of digits exclusively, integer
or bigint
would be faster.
One way to make this fast would be to materialize the view. I.e., write the result into a (temporary) table:
CREATE TEMP TABLE tmp_orders AS
SELECT * FROM orders;
ANALYZE tmp_orders; -- temp tables are not auto-analyzed!
ALTER TABLE tmp_orders
ADD constraint orders_pk PRIMARY KEY (order_nr, source);
You need an index. In my example, the primary key constraint provides the index automatically.
If your tables are big, make sure you have enough temporary buffers to handle this in RAM before you create the temp table. Else it will actually slow you down.
SET temp_buffers = 1000MB;
Has to be the first call to temp objects in your session. Don't set it high globally, just for your session. A temp table is dropped automatically at the end of your session anyway.
To get an estimate how much RAM you need, create the table once and measure:
SELECT pg_size_pretty(pg_total_relation_size('tmp_orders'));
More on object sizes under this related question on dba.SE.
All the overhead only pays if you have to process a number of queries within one session. For other use cases there are other solutions. If you know the source table at the time of the query, it would be much faster to direct your query to the source table instead. If you don't, I would question the uniqueness of your order_nr
once more. If it is, in fact, guaranteed to be unique you can drop the column source
I introduced.
For only one or a few queries, it might be faster to use the view instead of the materialized view.
I would also consider a plpgsql function that queries one table after the other until the record is found. Might be cheaper for a couple of queries, considering the overhead. Indexes for every table needed of course.
Also, if you stick to text
or varchar
for your order_nr
, consider COLLATE "C" for it.