I have 10 linear models where I only need some information, namely: r-squared, p-value, coefficients of slope and intercept. I managed to extract these values (via ridiculously
Consider building a matrix of lm
results. First create a defined function to handle your generalized data frame model build with results extraction. Then, call by
which can subset your data frame by a factor column and pass each subset into defined method. Finally, rbind
all grouped matrices together for a singular output
lm_results <- function(df) {
model <- lm(Qend ~ Rainfall, data = df)
res <- summary(model)
p <- res$fstatistic
c(gradient = res$coefficients[2,1],
intercept = res$coefficients[2,2],
r_sq = res$r.squared,
adj_r_sq = res$adj.r.squared,
f_stat = p[['value']],
p_value = unname(pf(p[1], p[2], p[3], lower.tail=FALSE))
)
}
matrix_list <- by(d, d$group, lm_results)
final_matrix <- do.call(rbind, matrix_list)
To demonstrate on random, seeded data
set.seed(12262018)
data_tools <- c("sas", "stata", "spss", "python", "r", "julia")
d <- data.frame(
group = sample(data_tools, 500, replace=TRUE),
int = sample(1:15, 500, replace=TRUE),
Qend = rnorm(500) / 100,
Rainfall = rnorm(500) * 10
)
Results
mat_list <- by(d, d$group, lm_results)
final_matrix <- do.call(rbind, mat_list)
final_matrix
# gradient intercept r_sq adj_r_sq f_stat p_value
# julia -1.407313e-04 1.203832e-04 0.017219149 0.004619395 1.3666258 0.24595273
# python -1.438116e-04 1.125170e-04 0.018641512 0.007230367 1.6336233 0.20464162
# r 2.031717e-04 1.168037e-04 0.041432175 0.027738349 3.0256098 0.08635510
# sas -1.549510e-04 9.067337e-05 0.032476668 0.021355710 2.9203121 0.09103619
# spss 9.326656e-05 1.068516e-04 0.008583473 -0.002682623 0.7618853 0.38511469
# stata -7.079514e-05 1.024010e-04 0.006013841 -0.006568262 0.4779679 0.49137093
Using library(data.table)
you can do
d <- fread("example.csv")
d[, .(
r2 = (fit <- summary(lm(Qend~Rainfall)))$r.squared,
adj.r2 = fit$adj.r.squared,
intercept = fit$coefficients[1,1],
gradient = fit$coefficients[2,1],
p.value = {p <- fit$fstatistic; pf(p[1], p[2], p[3], lower.tail=FALSE)}),
by = CatChro]
# CatChro r2 adj.r2 intercept gradient p.value
# 1: A3G1 0.03627553 0.011564648 0.024432020 0.0001147645 0.2329519751
# 2: A3D1 0.28069553 0.254054622 0.011876543 0.0004085644 0.0031181110
# 3: A3G2 0.06449971 0.041112205 0.026079409 0.0004583538 0.1045970987
# 4: A3D2 0.03384173 0.005425311 0.023601325 0.0005431693 0.2828170556
# 5: A3G3 0.07587433 0.054383038 0.043537869 0.0006964512 0.0670399684
# 6: A3D3 0.04285322 0.002972105 0.022106960 0.0001451185 0.3102578215
# 7: A3G4 0.17337420 0.155404076 0.023706652 0.0006442175 0.0032431299
# 8: A3D4 0.37219027 0.349768492 0.009301843 0.0006614213 0.0003442445
# 9: A3G5 0.17227383 0.150491566 0.025994831 0.0006658466 0.0077413595
#10: A3D5 0.04411669 -0.008987936 0.014341399 0.0001084626 0.3741011769
Here in only a couple of lines:
library(tidyverse)
library(broom)
# create grouped dataframe:
df_g <- df %>% group_by(CatChro)
df_g %>% do(tidy(lm(Qend ~ Rainfall, data = .))) %>%
select(CatChro, term, estimate) %>% spread(term, estimate) %>%
left_join(df_g %>% do(glance(lm(Qend ~ Rainfall, data = .))) %>%
select(CatChro, r.squared, adj.r.squared, p.value), by = "CatChro")
And the result will be:
# A tibble: 10 x 6
# Groups: CatChro [?]
CatChro `(Intercept)` Rainfall r.squared adj.r.squared p.value
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A3D1 0.0119 0.000409 0.281 0.254 0.00312
2 A3D2 0.0236 0.000543 0.0338 0.00543 0.283
3 A3D3 0.0221 0.000145 0.0429 0.00297 0.310
4 A3D4 0.00930 0.000661 0.372 0.350 0.000344
5 A3D5 0.0143 0.000108 0.0441 -0.00899 0.374
6 A3G1 0.0244 0.000115 0.0363 0.0116 0.233
7 A3G2 0.0261 0.000458 0.0645 0.0411 0.105
8 A3G3 0.0435 0.000696 0.0759 0.0544 0.0670
9 A3G4 0.0237 0.000644 0.173 0.155 0.00324
10 A3G5 0.0260 0.000666 0.172 0.150 0.00774
The following creates a dataframe with all coefficients and the corresponding statistics (tidy turns the result of lm into a dataframe):
df_g %>%
do(tidy(lm(Qend ~ Rainfall, data = .)))
A tibble: 20 x 6
Groups: CatChro [10]
CatChro term estimate std.error statistic p.value
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 A3D1 (Intercept) 0.0119 0.00358 3.32 0.00258
2 A3D1 Rainfall 0.000409 0.000126 3.25 0.00312
3 A3D2 (Intercept) 0.0236 0.00928 2.54 0.0157
4 A3D2 Rainfall 0.000543 0.000498 1.09 0.283
I understand that you want to have the intercept and the coefficient on Rainfall as individual columns, so let's "spread" them out. This is achieved by first selecting the relevant columns, and then invoking tidyr::spread
, as in
select(CatChro, term, estimate) %>% spread(term, estimate)
This gives you:
df_g %>% do(tidy(lm(Qend ~ Rainfall, data = .))) %>%
select(CatChro, term, estimate) %>% spread(term, estimate)
A tibble: 10 x 3
Groups: CatChro [10]
CatChro `(Intercept)` Rainfall
<chr> <dbl> <dbl>
1 A3D1 0.0119 0.000409
2 A3D2 0.0236 0.000543
3 A3D3 0.0221 0.000145
4 A3D4 0.00930 0.000661
Glance gives you the summary statistics you are looking for, for each model one. The models are indexed by group, here CatChro, so it is easy to just merge them onto the previous dataframe, which is what the rest of the code is about.
Another solution, with lme4::lmList
. The summary()
method for objects produced by lmList
does almost everything you want (although it doesn't store p-values, that's something I had to add below).
m <- lme4::lmList(Qend~Rainfall|CatChro,data=d)
s <- summary(m)
pvals <- apply(s$fstatistic,1,function(x) pf(x[1],x[2],x[3],lower.tail=FALSE))
data.frame(intercept=coef(s)[,"Estimate","(Intercept)"],
slope=coef(s)[,"Estimate","Rainfall"],
r.squared=s$r.squared,
adj.r.squared=unlist(s$adj.r.squared),
p.value=pvals)
Here is a base R solution:
data <- read.csv("./data/so53933238.csv",header=TRUE)
# split by value of CatChro into a list of datasets
dataList <- split(data,data$CatChro)
# process the list with lm(), extract results to a data frame, write to a list
lmResults <- lapply(dataList,function(x){
y <- summary(lm(Qend ~ Rainfall,data = x))
Intercept <- y$coefficients[1,1]
Slope <- y$coefficients[2,1]
rSquared <- y$r.squared
adjRSquared <- y$adj.r.squared
f <- y$fstatistic[1]
pValue <- pf(y$fstatistic[1],y$fstatistic[2],y$fstatistic[3],lower.tail = FALSE)
data.frame(Slope,Intercept,rSquared,adjRSquared,pValue)
})
lmResultTable <- do.call(rbind,lmResults)
# add CatChro indicators
lmResultTable$catChro <- names(dataList)
lmResultTable
...and the output:
> lmResultTable
Slope Intercept rSquared adjRSquared pValue catChro
A3D1 0.0004085644 0.011876543 0.28069553 0.254054622 0.0031181110 A3D1
A3D2 0.0005431693 0.023601325 0.03384173 0.005425311 0.2828170556 A3D2
A3D3 0.0001451185 0.022106960 0.04285322 0.002972105 0.3102578215 A3D3
A3D4 0.0006614213 0.009301843 0.37219027 0.349768492 0.0003442445 A3D4
A3D5 0.0001084626 0.014341399 0.04411669 -0.008987936 0.3741011769 A3D5
A3G1 0.0001147645 0.024432020 0.03627553 0.011564648 0.2329519751 A3G1
A3G2 0.0004583538 0.026079409 0.06449971 0.041112205 0.1045970987 A3G2
A3G3 0.0006964512 0.043537869 0.07587433 0.054383038 0.0670399684 A3G3
A3G4 0.0006442175 0.023706652 0.17337420 0.155404076 0.0032431299 A3G4
A3G5 0.0006658466 0.025994831 0.17227383 0.150491566 0.0077413595 A3G5
>
To render the output in a tabular format in HTML, one can use knitr::kable()
.
library(knitr)
kable(lmResultTable[1:5],row.names=TRUE,digits=5)
...which produces the following output after rendering the Markdown: