I would like to calculate the diff of variables in a data table, grouped by id. Here is some sample data. The data is recorded at a sample rate of 1 Hz. I would like to estim
You can try
setnames(dt[, lapply(.SD, function(x) c(NA,diff(x))), by=id],
2:3, c('dx', 'dy'))[]
# id dx dy
#1: 1 NA NA
#2: 1 1 2
#3: 1 1 1
#4: 2 NA NA
#5: 2 4 -6
#6: 2 1 1
Another option would be to use dplyr
library(dplyr)
df %>%
group_by(id) %>%
mutate_each(funs(c(NA,diff(.))))%>%
rename(dx=x, dy=y)
You can repeat the step twice
dt[, c('dx', 'dy'):=lapply(.SD, function(x) c(NA, diff(x))), by=id]
dt[,c('dx2', 'dy2'):= lapply(.SD, function(x) c(NA, diff(x))),
by=id, .SDcols=4:5]
dt
# x y id dx dy dx2 dy2
#1: 1 2 1 NA NA NA NA
#2: 2 4 1 1 2 NA NA
#3: 3 5 1 1 1 0 -1
#4: 1 8 2 NA NA NA NA
#5: 5 2 2 4 -6 NA NA
#6: 6 3 2 1 1 -3 7
Or we can use the shift
function from data.table
dt[, paste0("d", c("x", "y")) := .SD - shift(.SD), by = id
][, paste0("d", c("x2", "y2")) := .SD - shift(.SD) , by = id, .SDcols = 4:5 ]