I try to throw job with Pytorch
code in google-cloud-ml.
so I code the \"setup.py\" file. And add option \"install_requires\"
\"setup.py\"
<i find solution about setting up PYTORCH in google-cloud-ml
first
you have to get a .whl
file about pytorch and store it to google storage bucket.
and you will get the link for bucket link.
gs://bucketname/directory/torch-0.3.0.post4-cp27-cp27mu-linux_x86_64.whl
the .whl
file is depend on your python version or cuda version....
second
you write the command line and setup.py because you have to set up the google-cloud-ml setting.
related link is this submit_job_to_ml-engine
you write the setup.py
file to describe your setup.
the related link is this write_setup.py_file
this is my command code and setup.py file
===================================================================== "command"
#commandline code
JOB_NAME="run_ml_engine_pytorch_test_$(date +%Y%m%d_%H%M%S)"
REGION=us-central1
OUTPUT_PATH=gs://yourbucket
gcloud ml-engine jobs submit training $JOB_NAME \
--job-dir $OUTPUT_PATH \
--runtime-version 1.4 \
--module-name models.pytorch_test \
--package-path models/ \
--packages gs://yourbucket/directory/torch-0.3.0.post4-cp27-cp27mu-linux_x86_64.whl \
--region $REGION \
-- \
--verbosity DEBUG
===================================================================== "setup.py"
from setuptools import find_packages
from setuptools import setup
REQUIRED_PACKAGES = ['torchvision']
setup(
name='trainer',
version='0.1',
install_requires=REQUIRED_PACKAGES,
packages=find_packages(),
include_package_data=True,
description='My pytorch trainer application package.'
)
=====================================================================
third if you have experience submitting job to the ml-engine. you might know the file structure about submitting ml-engine packaging_training_model. you have to follow above link and know how to pack files.
The actual error message is a bit buried, but it is this:
'install_requires' must be a string or list of strings containing valid project/version requirement specifiers; Invalid requirement, parse error at "'://downl'"
To use packages not hosted on PyPI, you need to use dependency_links
(see this documentation). Something like this ought to work:
from setuptools import find_packages
from setuptools import setup
REQUIRED_PACKAGES = ['torchvision']
DEPENDENCY_LINKS = ['http://download.pytorch.org/whl/cpu/torch-0.3.0.post4-cp27-cp27mu-linux_x86_64.whl']
setup(
name='trainer',
version='0.1',
install_requires=REQUIRED_PACKAGES,
dependency_links=DEPENDENCY_LINKS,
packages=find_packages(),
include_package_data=True,
description='My keras trainer application package.'
)