The problem in the link: can be integrated analytically and the answer is 4, however I\
Well, this is strange, because on the poster's similar previous question I claimed this can't be done, and now after having looked at Guddu's answer I realize its not that complicated. What I wrote before, that a numerical integration results in a number but not a function, is true – but beside the point: One can just define a function that evaluates the integral for every given parameter, and this way effectively one does have a function as a result of a numerical integration.
Anyways, here it goes:
function q = outer
f = @(z) (z .* exp(inner(z)));
q = quad(f, eps, 2);
end
function qs = inner(zs)
% compute \int_0^1 1 / (y + z) dy for given z
qs = nan(size(zs));
for i = 1 : numel(zs)
z = zs(i);
f = @(y) (1 ./ (y + z));
qs(i) = quad(f, 0 , 1);
end
end
I applied the simplification suggested by myself in a comment, eliminating x. The function inner
calculates the value of the inner integral over y as a function of z. Then the function outer computes the outer integral over z. I avoid the pole at z = 0 by letting the integration run from eps
instead of 0. The result is
4.00000013663955
inner
has to be implemented using a for
loop because a function given to quad
needs to be able to return its value simultaneously for several argument values.
by no means, this is elegant. hope someone can make better use of matlab functions than me. i have tried the brute force way just to practice numerical integration. i have tried to avoid the pole in the inner integral at z=0 by exploiting the fact that it is also being multiplied by z. i get 3.9993. someone must get better solution by using something better than trapezoidal rule
function []=sofn
clear all
global x y z xx yy zz dx dy
dx=0.05;
x=0:dx:1;
dy=0.002;
dz=0.002;
y=0:dy:1;
z=0:dz:2;
xx=length(x);
yy=length(y);
zz=length(z);
s1=0;
for i=1:zz-1
s1=s1+0.5*dz*(z(i+1)*exp(inte1(z(i+1)))+z(i)*exp(inte1(z(i))));
end
s1
end
function s2=inte1(localz)
global y yy dy
if localz==0
s2=0;
else
s2=0;
for j=1:yy-1
s2=s2+0.5*dy*(inte2(y(j),localz)+inte2(y(j+1),localz));
end
end
end
function s3=inte2(localy,localz)
global x xx dx
s3=0;
for k=1:xx-1
s3=s3+0.5*dx*(2/(localy+localz));
end
end