Extract text using regex in R

后端 未结 5 1937
一整个雨季
一整个雨季 2021-01-25 02:15

I read the text file with below data and am trying to convert it to a dataframe

Id:   1
ASIN: 0827229534
  title: Patterns of Preaching: A Sermon Sampler
  group         


        
相关标签:
5条回答
  • 2021-01-25 02:45

    Using the tidyverse package:

    library(tidyverse)
    
    text <- list(readLines("https://raw.githubusercontent.com/pranavn91/PhD/master/Expt/sample.txt"))
    
    out <- tibble(text = text)
    
    out <- out %>%
      rowwise() %>%
      mutate(ids = str_extract(text,"Id: .+") %>% na.omit() %>% str_remove("Id: ") %>% str_c(collapse = ", "),
             ASIN = str_extract(text,"ASIN: .+") %>% na.omit() %>% str_remove("ASIN: ") %>% str_c(collapse = ", "),
             title = str_extract(text,"title: .+") %>% na.omit() %>% str_remove("title: ") %>% str_c(collapse = ", "),
             group = str_extract(text,"group: .+") %>% na.omit() %>% str_remove("group: ") %>% str_c(collapse = ", "),
             similar = str_extract(text,"similar: .+") %>% na.omit() %>% str_remove("similar: ") %>% str_c(collapse = ", "),
             rating = str_extract(text,"avg rating: .+") %>% na.omit() %>% str_remove("avg rating: ") %>% str_c(collapse = ", ")
             ) %>%
      ungroup()
    

    I put the text in a list because I assume that you will want to create a dataframe with more than one item being looked up. If you do just add a new list item for each readLines that you do.

    Notice that mutate looks at each item in the list as an object which is equivalent to using text[[1]]...

    If you have and item occur more than once you'll need to add %>% str_c(collapse = ", ") like I have done, otherwise you can remove it.

    UPDATE based on new sample data:

    The new sample dataset creates some different challenges that weren't addressed in my original answer.

    First, the data is all in a single file and I had assumed it would be in multiple files. It is possible to either separate everything into a list of lists, or to separate everything into a vector of characters. I chose the second option.

    Because I chose the second option I now have to update my code to extract data until a \r is reached (Need to \\r in R because of how R handles escapes).

    Next, some of the fields are empty! Have to add a check to see if the result is empty and fix the output if it is. I'm using %>% ifelse(length(.)==0,NA,.) to accomplish this.

    Note: if you add other fields such as categories: to this search the code will only capture the first line of text. It will need to be modified to capture more than one line.

    library(tidyverse)
    
    # Read text into a single long file.
    text <- read_file("https://raw.githubusercontent.com/pranavn91/PhD/master/Expt/sample.txt")
    
    # Separate each Id: into a character string in a vector
    # Use negative lookahead to capture groups that don't have Id: in them.
    # Use an or to also capture any non-words that don't have Id: in them.
    text <- str_extract_all(text,"Id: (((?!Id:).)|[^(Id:)])+") %>% 
      flatten()
    
    out <- tibble(text = text)
    
    out <- out %>%
      rowwise() %>%
      mutate(ids = str_extract(text,"Id: ((?!\\\\r).)+") %>% na.omit() %>% str_remove("Id: ") %>% str_c(collapse = ", ") %>% ifelse(length(.)==0,NA,.),
             ASIN = str_extract(text,"ASIN: ((?!\\\\r).)+") %>% na.omit() %>% str_remove("ASIN: ") %>% str_c(collapse = ", ") %>% ifelse(length(.)==0,NA,.),
             title = str_extract(text,"title: ((?!\\\\r).)+") %>% na.omit() %>% str_remove("title: ") %>% str_c(collapse = ", ") %>% ifelse(length(.)==0,NA,.),
             group = str_extract(text,"group: ((?!\\\\r).)+") %>% na.omit() %>% str_remove("group: ") %>% str_c(collapse = ", ") %>% ifelse(length(.)==0,NA,.),
             similar = str_extract(text,"similar: ((?!\\\\r).)+") %>% na.omit() %>% str_remove("similar: \\d") %>% str_c(collapse = ", ") %>% ifelse(length(.)==0,NA,.),
             rating = str_extract(text,"avg rating: ((?!\\\\r).)+") %>% na.omit() %>% str_remove("avg rating: ") %>% str_c(collapse = ", ") %>% ifelse(length(.)==0,NA,.)
      ) %>%
      ungroup()
    
    0 讨论(0)
  • 2021-01-25 02:46

    EDIT: Correcting my answer.

    Using stringr:

    library(stringr)
    
    ids <- str_extract(text, 'Id:[ ]*\\S+')
    ASIN <- str_extract(text, 'ASIN:[ ]*\\S+')
    title <- str_extract(text, 'title:[ ]*\\S+')
    group <- str_extract(text, 'group:[ ]*\\S+')
    similar <- str_extract(text, 'similar:[ ]*\\S+')
    rating <- str_extract(text, 'avg rating:[ ]*\\S+')
    
    0 讨论(0)
  • 2021-01-25 02:47

    Here is a different approach using separate_rows and spread to reformat the text file into a dataframe:

    text = readLines(path_to_textfile)
    
    library(dplyr)
    library(tidyr)
    
    data.frame(text = text) %>%
      separate_rows(text, sep = "(?<=\\d)\\s+(?=[a-z])") %>%
      extract(text, c("title", "value"), regex = "(?i)([a-z]+):(.+)") %>%
      filter(!title %in% c("reviews", "downloaded")) %>%
      group_by(title) %>%
      mutate(id = 1:n()) %>%
      spread(title, value) %>%
      select(-id)
    

    Result:

             ASIN group   Id rating salesrank
    1  0827229534  Book    1      5    396585
    2    12412441  Book    2     10   4225352
                                                             similar
    1  5  0804215715  156101074X  0687023955  0687074231  082721619X
    2                                         1241242 1412414 124124
                                         title
    1  Patterns of Preaching: A Sermon Sampler
    2                                Patterns2
    

    Data:

    Id:   1
    ASIN: 0827229534
      title: Patterns of Preaching: A Sermon Sampler
      group: Book
      salesrank: 396585
      similar: 5  0804215715  156101074X  0687023955  0687074231  082721619X
      reviews: total: 2  downloaded: 2  avg rating: 5
    Id:   2
    ASIN: 12412441
      title: Patterns2
      group: Book
      salesrank: 4225352
      similar: 1241242 1412414 124124
      reviews: total: 2  downloaded: 2  avg rating: 10
    

    Note:

    Leave an extra blank row at the end of the text file. Otherwise readLines would return an error when attempting to read in the file.

    0 讨论(0)
  • 2021-01-25 02:47

    This is just a start. Since im not a pro in regExp I will let others do the magic. :)

    Either you define the rules for every object and do something like this.

    ids <- do.call(rbind, regmatches(regexec(pattern = 'Id:\\s+', text = text), x = text))
    ASIN <- do.call(rbind, regmatches(regexec(pattern = 'ASIN:\\s+', text = text), x = text))
    title <- do.call(rbind, regmatches(regexec(pattern = 'title:\\s+', text = text), x = text))
    

    Or you define a general rule, which should work for every line. Something like this:

    sapply(text,  FUN = function(x) {
      regmatches(x, regexec(text = x, pattern = "([^:]+)"))
      })
    
    sapply(text,  FUN = function(x) {
      regmatches(x, regexec(text = x, pattern = "(:.*)"))
    })
    
    0 讨论(0)
  • 2021-01-25 03:02

    I am mostly using baseR here (apart from zoo and tiydr), may be little long code, but it can get the desired results.

    options(stringsAsFactors = F)
    text <- readLines("https://raw.githubusercontent.com/pranavn91/PhD/master/Expt/sample.txt") #Input file
    
    textdf <- data.frame(text, stringsAsFactors = F) #Reading it
    search_words <- c("Id","ASIN","title","group","salesrank","similar","avg rating") #search words as per OP
    textdf <- data.frame(text = textdf[grepl(paste0(search_words,collapse = "|"), textdf$text),]) #finding the words and filtering it
    textdf$key <- as.numeric(gsub("Id:\\s+(\\d+)","\\1",textdf$text))
    View(textdf) # Making a key for each Id
    
    textdf$key <- zoo::na.locf(textdf$key) #Propagating the key for same set of Ids
    textdf$text <- gsub( "(.*)(?=avg rating:\\s*\\d+)","", textdf$text, perl=T) #Removing text from before "avg rating" 
    textdf$text <- gsub("(similar:\\s*\\d+)(.*)","\\1", textdf$text, perl=T) #Removing text after "similar"
    textdf$text <- trimws(textdf$text) ##removing leading and trailing blanks
    textdf$text <- sub(":","+",textdf$text) #Replacing the first instance of : so that we can split with plus sign, since plus sign is very uncommon hence took it
    splits <- strsplit(textdf$text, "\\+")  #Splitting 
    max_len <- max(lengths(splits)) #checking for max length of items in the list
    all_lyst_eq_len <- lapply(splits, `length<-`, max_len) #equaling the list
    df_final <- data.frame(cbind(do.call('rbind', all_lyst_eq_len), textdf$key))# binding the data frame
    
    df_final <- df_final[!duplicated(df_final),] #Removing the duplicates, there is some dups in data
    df_f <- tidyr::spread(df_final, X1,X2) # Reshaping it(transposing)
    
    df_f[,c("Id","ASIN", "title", "group","similar",
                "avg rating")] #Final dataset 
    

    Output:

    The text file is very wrapped up hence adding a screenshot , my apologies to community.

    The output is ditto as per OP.

    0 讨论(0)
提交回复
热议问题