How to create DataFrame from fixed-length text file given field lengths?

后端 未结 1 822
无人共我
无人共我 2021-01-24 08:29

I am reading fixed positional file. Final result of file is stored in string. I would like to convert string into a DataFrame to process further. Kindly help me on

相关标签:
1条回答
  • 2021-01-24 09:15

    Given the fixed-position file (say input.txt):

    11 apple     TRUE 0.56
    
    12 pear      FALSE1.34 
    
    13 raspberry TRUE 2.43 
    
    14 plum      TRUE 1.31 
    
    15 cherry    TRUE 1.4 
    

    and the length of every field in the input file as (say lengths):

    3,10,5,4
    

    you could create a DataFrame as follows:

    // Read the text file as is
    // and filter out empty lines
    val lines = spark.read.textFile("input.txt").filter(!_.isEmpty)
    
    // define a helper function to do the split per fixed lengths
    // Home exercise: should be part of a case class that describes the schema
    def parseLinePerFixedLengths(line: String, lengths: Seq[Int]): Seq[String] = {
      lengths.indices.foldLeft((line, Array.empty[String])) { case ((rem, fields), idx) =>
        val len = lengths(idx)
        val fld = rem.take(len)
        (rem.drop(len), fields :+ fld)
      }._2
    }
    
    // Split the lines using parseLinePerFixedLengths method
    val lengths = Seq(3,10,5,4)
    val fields = lines.
      map(parseLinePerFixedLengths(_, lengths)).
      withColumnRenamed("value", "fields") // <-- it'd be unnecessary if a case class were used
    scala> fields.show(truncate = false)
    +------------------------------+
    |fields                        |
    +------------------------------+
    |[11 , apple     , TRUE , 0.56]|
    |[12 , pear      , FALSE, 1.34]|
    |[13 , raspberry , TRUE , 2.43]|
    |[14 , plum      , TRUE , 1.31]|
    |[15 , cherry    , TRUE , 1.4 ]|
    +------------------------------+
    

    That's what you may have had already so let's unroll/destructure the nested sequence of fields into columns

    val answer = lengths.indices.foldLeft(fields) { case (result, idx) =>
      result.withColumn(s"col_$idx", $"fields".getItem(idx))
    }
    // drop the unnecessary/interim column
    scala> answer.drop("fields").show
    +-----+----------+-----+-----+
    |col_0|     col_1|col_2|col_3|
    +-----+----------+-----+-----+
    |  11 |apple     |TRUE | 0.56|
    |  12 |pear      |FALSE| 1.34|
    |  13 |raspberry |TRUE | 2.43|
    |  14 |plum      |TRUE | 1.31|
    |  15 |cherry    |TRUE | 1.4 |
    +-----+----------+-----+-----+
    

    Done!

    0 讨论(0)
提交回复
热议问题