Consider the following example:
I have a dataset of Movielens-
u.item.csv
ID|MOVIE NAME (YEAR)|REL.DATE|NULL|IMDB LINK|A|B|C|D|E
I think you need map by Series
created by set_index:
print (df1.set_index('ID')['MOVIE NAME (YEAR)'])
ID
1 Toy Story (1995)
2 GoldenEye (1995)
3 Four Rooms (1995)
Name: MOVIE NAME (YEAR), dtype: object
df2['movie_id'] = df2['movie_id'].map(df1.set_index('ID')['MOVIE NAME (YEAR)'])
print (df2)
user_id movie_id rating unix_timestamp
0 1 Toy Story (1995) 5 874965758
1 1 GoldenEye (1995) 3 876893171
2 1 Four Rooms (1995) 4 878542960
Or use replace:
df2['movie_id'] = df2['movie_id'].replace(df1.set_index('ID')['MOVIE NAME (YEAR)'])
print (df2)
user_id movie_id rating unix_timestamp
0 1 Toy Story (1995) 5 874965758
1 1 GoldenEye (1995) 3 876893171
2 1 Four Rooms (1995) 4 878542960
Difference is if not match, map
create NaN
and replace let original value:
print (df2)
user_id movie_id rating unix_timestamp
0 1 1 5 874965758
1 1 2 3 876893171
2 1 5 4 878542960 <- 5 not match
df2['movie_id'] = df2['movie_id'].map(df1.set_index('ID')['MOVIE NAME (YEAR)'])
print (df2)
user_id movie_id rating unix_timestamp
0 1 Toy Story (1995) 5 874965758
1 1 GoldenEye (1995) 3 876893171
2 1 NaN 4 878542960
df2['movie_id'] = df2['movie_id'].replace(df1.set_index('ID')['MOVIE NAME (YEAR)'])
print (df2)
user_id movie_id rating unix_timestamp
0 1 Toy Story (1995) 5 874965758
1 1 GoldenEye (1995) 3 876893171
2 1 5 4 878542960