Predict using randomForest package in R

前端 未结 2 1599
灰色年华
灰色年华 2021-01-24 07:19

How can I use result of randomForrest call in R to predict labels on some unlabled data (e.g. real world input to be classified)?
Code:

train_data = read.csv         


        
相关标签:
2条回答
  • 2021-01-24 07:58

    You can use the predict function

    for example:

    data(iris)
    set.seed(111)
    ind <- sample(2, nrow(iris), replace = TRUE, prob=c(0.8, 0.2))
    iris.rf <- randomForest(Species ~ ., data=iris[ind == 1,])
    iris.pred <- predict(iris.rf, iris[ind == 2,])
    

    This is from http://ugrad.stat.ubc.ca/R/library/randomForest/html/predict.randomForest.html

    0 讨论(0)
  • 2021-01-24 08:02

    Let me know if this is what you are getting at.

    You train your randomforest with your training data:

    # Training dataset
    train_data <- read.csv("train.csv")
    #Train randomForest
    forest_model <- randomForest(label ~ ., data=train_data)
    

    Now that the randomforest is trained, you want to give it new data so it can predict what the labels are.

    input_data$predictedlabel <- predict(forest_model, newdata=input_data)
    

    The above code adds a new column to your input_data showing the predicted label.

    0 讨论(0)
提交回复
热议问题