let us consider following code for impulse function
function y=impulse_function(n);
y=0;
if n==0
y=1;
end
end
this code
>
In the first case you are comparing an array to the value 0. This will give the result [0 0 1 0 0], which is not a simple true or false. So the statement y = 0;
will not get executed and f will be [0 0 0 0 0] as shown.
In the second you are iterating through the array value by value and passing it to the function. Since the array contains the value 0, then you will get 1 back from the function in the print out of f (or [0 0 1 0 0], which is an impulse).
You'll need to modify your function to take array inputs.
cond = 0;
if cond == 0
disp(cond) % This will print 0 since 0 == 0
end
cond = 1;
if cond == 0
disp(cond) % This won't print since since 1 ~= 0 (not equal)
end
cond = [-2 -1 0 1 2];
if cond == 0
disp(cond) % This won't print since since [-2 -1 0 1 2] ~= 0 (not equal)
end
Your function is not defined to handle vector input.
Modify your impluse function as follows:
function y=impulse_function(n)
[a b]=size(n);
y=zeros(a,b);
y(n==0)=1;
end
In your definition of impulse_function, whole array is compared to zero and return value is only a single number instead of a vector.
You can write an even simpler function:
function y=impulse_function(n);
y = n==0;
Note that this will return y
as a type logical array but that should not affect later numerical computations.
You could define your impulse function
simply as this one -
impulse_function = @(n) (1:numel(n)).*n==0
Sample run -
>> n = -6:4
n =
-6 -5 -4 -3 -2 -1 0 1 2 3 4
>> out = impulse_function(n)
out =
0 0 0 0 0 0 1 0 0 0 0
Plot code -
plot(n,out,'o') %// data points
hold on
line([0 0],[1 0]) %// impulse point
Plot result -