Change date format of pandas column (month-day-year to day-month-year)

前端 未结 2 839
失恋的感觉
失恋的感觉 2021-01-24 04:20

Got the following issue.

I have an column in my pandas with some dates and some empty values.

Example:

    1 - 3-20-2019
    2 - 
    3 - 2-25-2         


        
相关标签:
2条回答
  • 2021-01-24 05:01

    One can initialize the data for the days using strings, then convert the strings to datetimes. A print can then deliver the objects in the needed format.

    I will use an other format (with dots as separators), so that the conversion is clear between the steps.


    Sample code first:

    import pandas as pd
    data = {'day': ['3-20-2019', None, '2-25-2019'] }
    df = pd.DataFrame( data )
    
    df['day'] = pd.to_datetime(df['day'])
    df['day'] = df['day'].dt.strftime('%d.%m.%Y')
    df[ df == 'NaT' ] = '' 
    

    Comments on the above. The first instance of df is in the ipython interpreter:

    In [56]: df['day']                                                  
    Out[56]: 
    0    3-20-2019
    1         None
    2    2-25-2019
    Name: day, dtype: object
    

    After the conversion to datetime:

    In [58]: df['day']                                               
    Out[58]: 
    0   2019-03-20
    1          NaT
    2   2019-02-25
    Name: day, dtype: datetime64[ns]
    

    so that we have

    In [59]: df['day'].dt.strftime('%d.%m.%Y')
    Out[59]: 
    0    20.03.2019
    1           NaT
    2    25.02.2019
    Name: day, dtype: object
    

    That NaT makes problems. So we replace all its occurrences with the empty string.

    In [73]: df[ df=='NaT' ] = ''
    
    In [74]: df
    Out[74]: 
              day
    0  20.03.2019
    1            
    2  25.02.2019
    
    0 讨论(0)
  • 2021-01-24 05:01

    Not sure if this is the fastest way to get it done. Anyway,

    df = pd.DataFrame({'Date': {0: '3-20-2019', 1:"", 2:"2-25-2019"}}) #your dataframe
    df['Date'] = pd.to_datetime(df.Date) #convert to datetime format
    df['Date'] = [d.strftime('%d-%m-%Y') if not pd.isnull(d) else '' for d in df['Date']]
    

    Output:

             Date
    0  20-03-2019
    1            
    2  25-02-2019
    
    0 讨论(0)
提交回复
热议问题