Converting long to wide format

后端 未结 3 1367
北海茫月
北海茫月 2021-01-24 02:22
id <- c(1:8,1:8)
age1 <- c(7.5,6.7,8.6,9.5,8.7,6.3,9,5)
age2 <- age1 + round(runif(1,1,3),1)
age <- c(age1, age2)

tanner <-  sample(1:2, 16,replace=T)

d         


        
相关标签:
3条回答
  • 2021-01-24 02:43

    We can use dcast to convert from 'long' to 'wide' and use the fun.aggregate as min. Here I converted the 'data.frame' to 'data.table' (setDT(df)) as the dcast from data.table would be fast.

    library(data.table)
    res <- dcast(setDT(df), id~paste('age',tanner,sep='.'), value.var='age', min)
    res
    #   id age.1 age.2
    #1:  1  10.0   7.5
    #2:  2   6.7   Inf
    #3:  3  11.1   8.6
    #4:  4   Inf   9.5
    #5:  5   8.7  11.2
    #6:  6   6.3   8.8
    #7:  7   9.0   Inf
    #8:  8   5.0   Inf
    

    If we want to change the 'Inf' to 'NA'

    res[,(2:3) := lapply(.SD, function(x)
              replace(x, is.infinite(x), NA)),.SDcols= 2:3]
    
    0 讨论(0)
  • 2021-01-24 02:44

    A little dplyr and tidyr does the trick here. arrange by age so lowest age appear first then use a filter for duplicated id/tanner then utilize tidyr::spread

    df<-
    data.frame(
      id = c(1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8)
      ,age = c(7.5, 6.7, 8.6, 9.5, 8.7, 6.3, 9.0, 5.0,10.0, 9.2,11.1,12.0,11.2, 8.8,11.5, 7.5)
      ,tanner = c(2,1,2,2,1,1,1,1,1,1,1,2,2,2,1,1)
    )
    
    library(dplyr)
    library(tidyr)
    
    wide <- 
    df %>%
      arrange(age) %>%
      filter(!duplicated(paste(id, tanner))) %>%
      spread(tanner, age)
    
    colnames(wide) = c('id', 'tanner1', 'tanner2')
    wide
    
    #   id    1    2
    #    1 10.0  7.5
    #    2  6.7   NA
    #    3 11.1  8.6
    #    4   NA  9.5
    #    5  8.7 11.2
    #    6  6.3  8.8
    #    7  9.0   NA
    #    8  5.0   NA
    
    0 讨论(0)
  • 2021-01-24 02:58

    aggregate then reshape (using a copied and pasted version of your df rather than your code, that doesn't match):

    reshape(
      aggregate(age ~ ., data=df, FUN=min),
      idvar="id", timevar="tanner", direction="wide"
    )
    
    #   id age.1 age.2
    #1   1  10.0   7.5
    #2   2   6.7    NA
    #3   3  11.1   8.6
    #4   5   8.7  11.2
    #5   6   6.3   8.8
    #6   7   9.0    NA
    #7   8   5.0    NA
    #10  4    NA   9.5
    
    0 讨论(0)
提交回复
热议问题